磁共振图像中多发性硬化症病灶的比较分割

Selin Isoglu, E. Koca, D. G. Duru
{"title":"磁共振图像中多发性硬化症病灶的比较分割","authors":"Selin Isoglu, E. Koca, D. G. Duru","doi":"10.1109/EBBT.2017.7956784","DOIUrl":null,"url":null,"abstract":"In this study, the unsupervised clustering method namely K-means algorithm is applied for identifying the multiple sclerosis (MS) lesions in magnetic resonance (MR) images automatically. MS lesion detection is essential for diagnosing the disease and monitoring its progression. The automated method aims to eliminate user-dependent classification errors and to improve computational capacity in detecting more reliable MS segmentation results. K-means algorithm that relies on k cluster number on data is addressed to determine lesions in pathological brain MR images. Comparative segmentation is aimed by generating an in-house developed binary image segmentation routine in MATLAB. Segmented regions are compared to the results of K-means algorithm with respect to the predefined ROIs of lesions. The proposed K-means lesion detection routine is applied on real brain MR images and the results are qualitatively compared, and the method manages to locate the lesions successfully.","PeriodicalId":293165,"journal":{"name":"2017 Electric Electronics, Computer Science, Biomedical Engineerings' Meeting (EBBT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Comparative multiple sclerosis lesion segmentation in magnetic resonance images\",\"authors\":\"Selin Isoglu, E. Koca, D. G. Duru\",\"doi\":\"10.1109/EBBT.2017.7956784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the unsupervised clustering method namely K-means algorithm is applied for identifying the multiple sclerosis (MS) lesions in magnetic resonance (MR) images automatically. MS lesion detection is essential for diagnosing the disease and monitoring its progression. The automated method aims to eliminate user-dependent classification errors and to improve computational capacity in detecting more reliable MS segmentation results. K-means algorithm that relies on k cluster number on data is addressed to determine lesions in pathological brain MR images. Comparative segmentation is aimed by generating an in-house developed binary image segmentation routine in MATLAB. Segmented regions are compared to the results of K-means algorithm with respect to the predefined ROIs of lesions. The proposed K-means lesion detection routine is applied on real brain MR images and the results are qualitatively compared, and the method manages to locate the lesions successfully.\",\"PeriodicalId\":293165,\"journal\":{\"name\":\"2017 Electric Electronics, Computer Science, Biomedical Engineerings' Meeting (EBBT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Electric Electronics, Computer Science, Biomedical Engineerings' Meeting (EBBT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EBBT.2017.7956784\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Electric Electronics, Computer Science, Biomedical Engineerings' Meeting (EBBT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EBBT.2017.7956784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本研究将无监督聚类方法即K-means算法应用于磁共振(MR)图像中多发性硬化(MS)病变的自动识别。多发性硬化症病变检测是诊断疾病和监测其进展的必要条件。自动化方法旨在消除用户依赖的分类错误,并提高计算能力,以检测更可靠的MS分割结果。本文提出了一种基于k簇数的k -means算法来确定病理脑MR图像中的病变。对比分割的目的是在MATLAB中生成一个自主开发的二值图像分割程序。将分割的区域与K-means算法的结果相对于预定义的病变roi进行比较。将所提出的k均值病变检测程序应用于真实的脑MR图像,并对结果进行定性比较,该方法成功地定位了病变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparative multiple sclerosis lesion segmentation in magnetic resonance images
In this study, the unsupervised clustering method namely K-means algorithm is applied for identifying the multiple sclerosis (MS) lesions in magnetic resonance (MR) images automatically. MS lesion detection is essential for diagnosing the disease and monitoring its progression. The automated method aims to eliminate user-dependent classification errors and to improve computational capacity in detecting more reliable MS segmentation results. K-means algorithm that relies on k cluster number on data is addressed to determine lesions in pathological brain MR images. Comparative segmentation is aimed by generating an in-house developed binary image segmentation routine in MATLAB. Segmented regions are compared to the results of K-means algorithm with respect to the predefined ROIs of lesions. The proposed K-means lesion detection routine is applied on real brain MR images and the results are qualitatively compared, and the method manages to locate the lesions successfully.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detection of injured kidney in computed tomography Predictive cruise control Effects of aerobic capacity, age and gender on brain neural matter Electromagnetic radiation interaction and pollution measurements Characterization of a bend sensor for neuroprosthetic applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1