Michael L. Case, Victor N. Kravets, A. Mishchenko, R. Brayton
{"title":"在顺序可观察性条件下合并节点","authors":"Michael L. Case, Victor N. Kravets, A. Mishchenko, R. Brayton","doi":"10.1145/1391469.1391605","DOIUrl":null,"url":null,"abstract":"This paper presents a new type of sequential technology independent synthesis. Building on the previous notions of combinational observability and sequential equivalence, sequential observability is introduced and discussed. By considering both the sequential nature of the design and observability simultaneously, better results can be obtained than with either algorithm alone. The experimental results show that this method can reduce the technology-independent gate count up to 10% more than the previously best known synthesis techniques.","PeriodicalId":412696,"journal":{"name":"2008 45th ACM/IEEE Design Automation Conference","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Merging nodes under sequential observability\",\"authors\":\"Michael L. Case, Victor N. Kravets, A. Mishchenko, R. Brayton\",\"doi\":\"10.1145/1391469.1391605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new type of sequential technology independent synthesis. Building on the previous notions of combinational observability and sequential equivalence, sequential observability is introduced and discussed. By considering both the sequential nature of the design and observability simultaneously, better results can be obtained than with either algorithm alone. The experimental results show that this method can reduce the technology-independent gate count up to 10% more than the previously best known synthesis techniques.\",\"PeriodicalId\":412696,\"journal\":{\"name\":\"2008 45th ACM/IEEE Design Automation Conference\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 45th ACM/IEEE Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1391469.1391605\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 45th ACM/IEEE Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1391469.1391605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper presents a new type of sequential technology independent synthesis. Building on the previous notions of combinational observability and sequential equivalence, sequential observability is introduced and discussed. By considering both the sequential nature of the design and observability simultaneously, better results can be obtained than with either algorithm alone. The experimental results show that this method can reduce the technology-independent gate count up to 10% more than the previously best known synthesis techniques.