流行病学时间序列的挖掘:基于动态回归的方法

M. Chiogna, C. Gaetan
{"title":"流行病学时间序列的挖掘:基于动态回归的方法","authors":"M. Chiogna, C. Gaetan","doi":"10.1191/1471082X05st103oa","DOIUrl":null,"url":null,"abstract":"In epidemiology, time-series regression models are specially suitable for evaluating short-term effects of time-varying exposures to pollution. To summarize findings from different studies on different cities, the techniques of designed meta-analyses have been employed. In this context, city-specific findings are summarized by an ‘effect size’ measured on a common scale. Such effects are then pooled together on a second hierarchy of analysis. The objective of this article is to exploit exploratory analysis of city-specific time series. In fact, when dealing with many sources of data, that is, many cities, an exploratory analysis becomes almost unaffordable. Our idea is to explore the time series by fitting complete dynamic regression models. These models are easier to fit than models usually employed and allow implementation of very fast automated model selection algorithms. The idea is to highlight the common features across cities through this analysis, which might then be used to design the meta-analysis. The proposal is illustrated by analysing data on the relationship between daily nonaccidental deaths and air pollution in the 20 US largest cities.","PeriodicalId":354759,"journal":{"name":"Statistical Modeling","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Mining epidemiological time series: an approach based on dynamic regression\",\"authors\":\"M. Chiogna, C. Gaetan\",\"doi\":\"10.1191/1471082X05st103oa\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In epidemiology, time-series regression models are specially suitable for evaluating short-term effects of time-varying exposures to pollution. To summarize findings from different studies on different cities, the techniques of designed meta-analyses have been employed. In this context, city-specific findings are summarized by an ‘effect size’ measured on a common scale. Such effects are then pooled together on a second hierarchy of analysis. The objective of this article is to exploit exploratory analysis of city-specific time series. In fact, when dealing with many sources of data, that is, many cities, an exploratory analysis becomes almost unaffordable. Our idea is to explore the time series by fitting complete dynamic regression models. These models are easier to fit than models usually employed and allow implementation of very fast automated model selection algorithms. The idea is to highlight the common features across cities through this analysis, which might then be used to design the meta-analysis. The proposal is illustrated by analysing data on the relationship between daily nonaccidental deaths and air pollution in the 20 US largest cities.\",\"PeriodicalId\":354759,\"journal\":{\"name\":\"Statistical Modeling\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1191/1471082X05st103oa\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1191/1471082X05st103oa","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在流行病学中,时间序列回归模型特别适合于评价时变污染暴露的短期影响。为了总结不同城市的不同研究结果,采用了设计的元分析技术。在这种情况下,特定城市的研究结果通过在共同尺度上测量的“效应大小”来总结。然后将这些影响汇集在一起,进行第二层次的分析。本文的目的是利用城市特定时间序列的探索性分析。事实上,当处理许多数据源,即许多城市时,探索性分析几乎是负担不起的。我们的想法是通过拟合完整的动态回归模型来探索时间序列。这些模型比通常使用的模型更容易拟合,并且允许实现非常快速的自动模型选择算法。这个想法是通过这种分析来突出城市之间的共同特征,然后可以用来设计元分析。通过分析美国20个最大城市的日常非意外死亡与空气污染之间关系的数据,可以说明这一建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mining epidemiological time series: an approach based on dynamic regression
In epidemiology, time-series regression models are specially suitable for evaluating short-term effects of time-varying exposures to pollution. To summarize findings from different studies on different cities, the techniques of designed meta-analyses have been employed. In this context, city-specific findings are summarized by an ‘effect size’ measured on a common scale. Such effects are then pooled together on a second hierarchy of analysis. The objective of this article is to exploit exploratory analysis of city-specific time series. In fact, when dealing with many sources of data, that is, many cities, an exploratory analysis becomes almost unaffordable. Our idea is to explore the time series by fitting complete dynamic regression models. These models are easier to fit than models usually employed and allow implementation of very fast automated model selection algorithms. The idea is to highlight the common features across cities through this analysis, which might then be used to design the meta-analysis. The proposal is illustrated by analysing data on the relationship between daily nonaccidental deaths and air pollution in the 20 US largest cities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Use of auxiliary data in semi-parametric spatial regression with nonignorable missing responses Bayesian modeling for genetic association in case-control studies: accounting for unknown population substructure GLMM approach to study the spatial and temporal evolution of spikes in the small intestine Comparing nonparametric surfaces Analyzing the emergence times of permanent teeth: an example of modeling the covariance matrix with interval-censored data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1