学习路由

Asaf Valadarsky, Michael Schapira, Dafna Shahaf, Aviv Tamar
{"title":"学习路由","authors":"Asaf Valadarsky, Michael Schapira, Dafna Shahaf, Aviv Tamar","doi":"10.1145/3152434.3152441","DOIUrl":null,"url":null,"abstract":"Recently, much attention has been devoted to the question of whether/when traditional network protocol design, which relies on the application of algorithmic insights by human experts, can be replaced by a data-driven (i.e., machine learning) approach. We explore this question in the context of the arguably most fundamental networking task: routing. Can ideas and techniques from machine learning (ML) be leveraged to automatically generate \"good\" routing configurations? We focus on the classical setting of intradomain traffic engineering. We observe that this context poses significant challenges for data-driven protocol design. Our preliminary results regarding the power of data-driven routing suggest that applying ML (specifically, deep reinforcement learning) to this context yields high performance and is a promising direction for further research. We outline a research agenda for ML-guided routing.","PeriodicalId":120886,"journal":{"name":"Proceedings of the 16th ACM Workshop on Hot Topics in Networks","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"156","resultStr":"{\"title\":\"Learning to Route\",\"authors\":\"Asaf Valadarsky, Michael Schapira, Dafna Shahaf, Aviv Tamar\",\"doi\":\"10.1145/3152434.3152441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, much attention has been devoted to the question of whether/when traditional network protocol design, which relies on the application of algorithmic insights by human experts, can be replaced by a data-driven (i.e., machine learning) approach. We explore this question in the context of the arguably most fundamental networking task: routing. Can ideas and techniques from machine learning (ML) be leveraged to automatically generate \\\"good\\\" routing configurations? We focus on the classical setting of intradomain traffic engineering. We observe that this context poses significant challenges for data-driven protocol design. Our preliminary results regarding the power of data-driven routing suggest that applying ML (specifically, deep reinforcement learning) to this context yields high performance and is a promising direction for further research. We outline a research agenda for ML-guided routing.\",\"PeriodicalId\":120886,\"journal\":{\"name\":\"Proceedings of the 16th ACM Workshop on Hot Topics in Networks\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"156\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 16th ACM Workshop on Hot Topics in Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3152434.3152441\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th ACM Workshop on Hot Topics in Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3152434.3152441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 156

摘要

最近,人们非常关注依赖于人类专家算法见解应用的传统网络协议设计是否/何时可以被数据驱动(即机器学习)方法所取代的问题。我们在最基本的网络任务:路由的背景下探讨这个问题。机器学习(ML)的思想和技术能否被用来自动生成“好的”路由配置?我们关注域内流量工程的经典设置。我们观察到,这种情况对数据驱动的协议设计提出了重大挑战。我们关于数据驱动路由能力的初步结果表明,将ML(特别是深度强化学习)应用于这种情况可以产生高性能,并且是进一步研究的有希望的方向。我们概述了机器学习引导路由的研究议程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning to Route
Recently, much attention has been devoted to the question of whether/when traditional network protocol design, which relies on the application of algorithmic insights by human experts, can be replaced by a data-driven (i.e., machine learning) approach. We explore this question in the context of the arguably most fundamental networking task: routing. Can ideas and techniques from machine learning (ML) be leveraged to automatically generate "good" routing configurations? We focus on the classical setting of intradomain traffic engineering. We observe that this context poses significant challenges for data-driven protocol design. Our preliminary results regarding the power of data-driven routing suggest that applying ML (specifically, deep reinforcement learning) to this context yields high performance and is a promising direction for further research. We outline a research agenda for ML-guided routing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HotCocoa: Hardware Congestion Control Abstractions Programmable Radio Environments for Smart Spaces DIY Hosting for Online Privacy An Axiomatic Approach to Congestion Control Online Advertising under Internet Censorship
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1