ERS-1型风散射仪与GVI数据在区域植被监测中的互补性

P. Frison, E. Mougin
{"title":"ERS-1型风散射仪与GVI数据在区域植被监测中的互补性","authors":"P. Frison, E. Mougin","doi":"10.1109/COMEAS.1995.472353","DOIUrl":null,"url":null,"abstract":"The ERS-1 wind scatterometer provides measurements of the radar backscattering coefficient /spl sigma//spl deg/ along different azimuthal directions, from which parameters can be retrieved. However, the low spatial resolution (about 50 km.), its high temporal repetitivity (the same point can be seen every 4 days with an incidence angle ranging from 18/spl deg/ to 59/spl deg/), and above all a frequency (5.3 GHz, VV polarisation) sensitive to land surface parameters such as vegetation cover and soil surface moisture content make this instrument well suited for terrestrial vegetation studies. At present, two years of fully calibrated data acquired by the ERS-1 scatterometer over the whole land surfaces offer a unique opportunity to assess the contribution of low resolution active microwave systems to global monitoring of terrestrial surfaces. On the other hand, several studies with NOAA/AVHRR GVI data (available since 1981) have shown how these data can be related to vegetation phenology and vegetation dynamics. Their rather coarse spatial resolution (about 10 km. At the equator) justifies the comparison with scatterometer data. In this paper, multitemporal profiles of both data sets acquired over representative vegetation types throughout the world for a 2-year period are shown. The complementarity of these two sources of satellite data are then examined. Results show that ERS-1 scatterometer data are sensitive to different land parameters according to their incidence angle. In particular, a good correlation between GVI data and scatterometer data acquired around 45/spl deg/ of incidence angle is observed.<<ETX>>","PeriodicalId":274878,"journal":{"name":"Conference Proceedings Second Topical Symposium on Combined Optical-Microwave Earth and Atmosphere Sensing","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complementarity of ERS-1 wind scatterometer and GVI data for regional vegetation monitoring\",\"authors\":\"P. Frison, E. Mougin\",\"doi\":\"10.1109/COMEAS.1995.472353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ERS-1 wind scatterometer provides measurements of the radar backscattering coefficient /spl sigma//spl deg/ along different azimuthal directions, from which parameters can be retrieved. However, the low spatial resolution (about 50 km.), its high temporal repetitivity (the same point can be seen every 4 days with an incidence angle ranging from 18/spl deg/ to 59/spl deg/), and above all a frequency (5.3 GHz, VV polarisation) sensitive to land surface parameters such as vegetation cover and soil surface moisture content make this instrument well suited for terrestrial vegetation studies. At present, two years of fully calibrated data acquired by the ERS-1 scatterometer over the whole land surfaces offer a unique opportunity to assess the contribution of low resolution active microwave systems to global monitoring of terrestrial surfaces. On the other hand, several studies with NOAA/AVHRR GVI data (available since 1981) have shown how these data can be related to vegetation phenology and vegetation dynamics. Their rather coarse spatial resolution (about 10 km. At the equator) justifies the comparison with scatterometer data. In this paper, multitemporal profiles of both data sets acquired over representative vegetation types throughout the world for a 2-year period are shown. The complementarity of these two sources of satellite data are then examined. Results show that ERS-1 scatterometer data are sensitive to different land parameters according to their incidence angle. In particular, a good correlation between GVI data and scatterometer data acquired around 45/spl deg/ of incidence angle is observed.<<ETX>>\",\"PeriodicalId\":274878,\"journal\":{\"name\":\"Conference Proceedings Second Topical Symposium on Combined Optical-Microwave Earth and Atmosphere Sensing\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Proceedings Second Topical Symposium on Combined Optical-Microwave Earth and Atmosphere Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMEAS.1995.472353\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Proceedings Second Topical Symposium on Combined Optical-Microwave Earth and Atmosphere Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMEAS.1995.472353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

ERS-1型风散射仪提供了雷达在不同方位上的后向散射系数/spl σ //spl度/的测量值,从中可以获取参数。然而,低空间分辨率(约50公里)、高时间重复性(每4天可以看到同一点,入射角范围从18/spl°/到59/spl°/),以及最重要的是,频率(5.3 GHz, VV偏振)对地表参数(如植被覆盖和土壤表面水分含量)敏感,使该仪器非常适合陆地植被研究。目前,ERS-1散射计在整个地表上获得的两年完全校准数据为评估低分辨率有源微波系统对地表全球监测的贡献提供了一个独特的机会。另一方面,对NOAA/AVHRR GVI数据(自1981年以来可获得)的几项研究表明,这些数据如何与植被物候和植被动态有关。它们的空间分辨率相当粗糙(约10公里)。在赤道)证明了与散射计数据的比较是正确的。本文给出了两组数据集在全球代表性植被类型上2年期间的多时段剖面图。然后审查这两种卫星数据来源的互补性。结果表明,ERS-1散射计数据对不同入射角的土地参数敏感。特别是在入射角为45/spl°时,GVI数据与散射计数据具有良好的相关性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Complementarity of ERS-1 wind scatterometer and GVI data for regional vegetation monitoring
The ERS-1 wind scatterometer provides measurements of the radar backscattering coefficient /spl sigma//spl deg/ along different azimuthal directions, from which parameters can be retrieved. However, the low spatial resolution (about 50 km.), its high temporal repetitivity (the same point can be seen every 4 days with an incidence angle ranging from 18/spl deg/ to 59/spl deg/), and above all a frequency (5.3 GHz, VV polarisation) sensitive to land surface parameters such as vegetation cover and soil surface moisture content make this instrument well suited for terrestrial vegetation studies. At present, two years of fully calibrated data acquired by the ERS-1 scatterometer over the whole land surfaces offer a unique opportunity to assess the contribution of low resolution active microwave systems to global monitoring of terrestrial surfaces. On the other hand, several studies with NOAA/AVHRR GVI data (available since 1981) have shown how these data can be related to vegetation phenology and vegetation dynamics. Their rather coarse spatial resolution (about 10 km. At the equator) justifies the comparison with scatterometer data. In this paper, multitemporal profiles of both data sets acquired over representative vegetation types throughout the world for a 2-year period are shown. The complementarity of these two sources of satellite data are then examined. Results show that ERS-1 scatterometer data are sensitive to different land parameters according to their incidence angle. In particular, a good correlation between GVI data and scatterometer data acquired around 45/spl deg/ of incidence angle is observed.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Moisture in a grass canopy from SSM/I radiobrightness Identification method on mathematical model of terrain profile section and experimental results by the millimeter wave altimeter X-band Doppler-radar and radiometer system Remote sensing of scattering surface if phase information in registered data is distorted or absent A preliminary design procedure to find the aperture diameter and other basic parameters of a feed able to satisfy radiometric requirements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1