{"title":"智能电网通信环境下虚拟电厂及其市场调度的Stackelberg博弈论策略","authors":"Weiqi Hua, Hongjian Sun, Hao Xiao, W. Pei","doi":"10.1109/SmartGridComm.2018.8587583","DOIUrl":null,"url":null,"abstract":"In order to schedule the virtual power plant and corresponding energy market operation, a two-scenario Stackelberg game-theoretic model is proposed to describe interactions between market operator and VPP operator. During market operation, the market operator is a leader of the game to decide market cleaning prices, considering the power loss minimization of VPP operator, whereas during VPP operation, the VPP operator becomes a leader to facilitate the demand side management (DSM) through proper monetary compensation, considering the market trading balance between power sellers and power buyers. An optimal scheduling strategy including power dispatch and market balance will be realised. Case studies prove the effectiveness of the proposed Stackelberg game-theoretic model through IEEE 30-bus test system. The market scheduling promotes the power exchange among VPPs. The VPP scheduling evaluates the optimal monetary compensation rate to motivate the DSM including load shifting and load curtailment.","PeriodicalId":213523,"journal":{"name":"2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Stackelberg Game-Theoretic Strategies for Virtual Power Plant and Associated Market Scheduling Under Smart Grid Communication Environment\",\"authors\":\"Weiqi Hua, Hongjian Sun, Hao Xiao, W. Pei\",\"doi\":\"10.1109/SmartGridComm.2018.8587583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to schedule the virtual power plant and corresponding energy market operation, a two-scenario Stackelberg game-theoretic model is proposed to describe interactions between market operator and VPP operator. During market operation, the market operator is a leader of the game to decide market cleaning prices, considering the power loss minimization of VPP operator, whereas during VPP operation, the VPP operator becomes a leader to facilitate the demand side management (DSM) through proper monetary compensation, considering the market trading balance between power sellers and power buyers. An optimal scheduling strategy including power dispatch and market balance will be realised. Case studies prove the effectiveness of the proposed Stackelberg game-theoretic model through IEEE 30-bus test system. The market scheduling promotes the power exchange among VPPs. The VPP scheduling evaluates the optimal monetary compensation rate to motivate the DSM including load shifting and load curtailment.\",\"PeriodicalId\":213523,\"journal\":{\"name\":\"2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartGridComm.2018.8587583\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm.2018.8587583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stackelberg Game-Theoretic Strategies for Virtual Power Plant and Associated Market Scheduling Under Smart Grid Communication Environment
In order to schedule the virtual power plant and corresponding energy market operation, a two-scenario Stackelberg game-theoretic model is proposed to describe interactions between market operator and VPP operator. During market operation, the market operator is a leader of the game to decide market cleaning prices, considering the power loss minimization of VPP operator, whereas during VPP operation, the VPP operator becomes a leader to facilitate the demand side management (DSM) through proper monetary compensation, considering the market trading balance between power sellers and power buyers. An optimal scheduling strategy including power dispatch and market balance will be realised. Case studies prove the effectiveness of the proposed Stackelberg game-theoretic model through IEEE 30-bus test system. The market scheduling promotes the power exchange among VPPs. The VPP scheduling evaluates the optimal monetary compensation rate to motivate the DSM including load shifting and load curtailment.