利用透射模式设计一种用于固态变压器的双向DC-DC变换器

K. Alam, L. Tria, Daming Zhang, M.F. Rahman
{"title":"利用透射模式设计一种用于固态变压器的双向DC-DC变换器","authors":"K. Alam, L. Tria, Daming Zhang, M.F. Rahman","doi":"10.1109/ICSET.2016.7811795","DOIUrl":null,"url":null,"abstract":"This paper concerns the design of a Solid-State Transformer (SST) based grid integrated battery charger with an isolated bi-directional dc-dc converter to maintain the overall system competitiveness. The proposed full bridge DC-DC converter exploits the shoot through mode in the V2G mode for the boosting purpose, which is the uniqueness of the proposed topology. The inclusion of SST in the design can exhibit substantially compact size and other potential functions such as reactive power flow control, bi-directional power flow etc. The design of the high frequency transformer along with the electrical equivalent circuit obtained from FEA analysis is presented, which is one of the key contributions of this paper. As a proof of concept, simulation results obtained from Matlab-Simulink tools are presented. In summary, design considerations in building the SST based DC-fast charger in a 1-kW power level are presented which can be scaled up to the desired power level according to the requirements.","PeriodicalId":164446,"journal":{"name":"2016 IEEE International Conference on Sustainable Energy Technologies (ICSET)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Design of a bi-directional DC-DC converter for Solid-State Transformer(SST) application by exploiting the shoot through mode\",\"authors\":\"K. Alam, L. Tria, Daming Zhang, M.F. Rahman\",\"doi\":\"10.1109/ICSET.2016.7811795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper concerns the design of a Solid-State Transformer (SST) based grid integrated battery charger with an isolated bi-directional dc-dc converter to maintain the overall system competitiveness. The proposed full bridge DC-DC converter exploits the shoot through mode in the V2G mode for the boosting purpose, which is the uniqueness of the proposed topology. The inclusion of SST in the design can exhibit substantially compact size and other potential functions such as reactive power flow control, bi-directional power flow etc. The design of the high frequency transformer along with the electrical equivalent circuit obtained from FEA analysis is presented, which is one of the key contributions of this paper. As a proof of concept, simulation results obtained from Matlab-Simulink tools are presented. In summary, design considerations in building the SST based DC-fast charger in a 1-kW power level are presented which can be scaled up to the desired power level according to the requirements.\",\"PeriodicalId\":164446,\"journal\":{\"name\":\"2016 IEEE International Conference on Sustainable Energy Technologies (ICSET)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Sustainable Energy Technologies (ICSET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSET.2016.7811795\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Sustainable Energy Technologies (ICSET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSET.2016.7811795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文研究了一种基于固态变压器(SST)的电网集成电池充电器的设计,该充电器具有隔离的双向dc-dc转换器,以保持整个系统的竞争力。所提出的全桥DC-DC变换器利用V2G模式下的通射模式进行升压,这是所提出拓扑结构的独特性。在设计中加入SST可以显示出非常紧凑的尺寸和其他潜在的功能,如无功潮流控制,双向潮流等。给出了高频变压器的设计方案,并通过有限元分析得到了等效电路,这是本文的重要贡献之一。作为概念验证,给出了Matlab-Simulink工具的仿真结果。综上所述,在构建基于SST的直流快速充电器时,提出了在1 kw功率水平下的设计考虑因素,可以根据需求扩展到所需的功率水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design of a bi-directional DC-DC converter for Solid-State Transformer(SST) application by exploiting the shoot through mode
This paper concerns the design of a Solid-State Transformer (SST) based grid integrated battery charger with an isolated bi-directional dc-dc converter to maintain the overall system competitiveness. The proposed full bridge DC-DC converter exploits the shoot through mode in the V2G mode for the boosting purpose, which is the uniqueness of the proposed topology. The inclusion of SST in the design can exhibit substantially compact size and other potential functions such as reactive power flow control, bi-directional power flow etc. The design of the high frequency transformer along with the electrical equivalent circuit obtained from FEA analysis is presented, which is one of the key contributions of this paper. As a proof of concept, simulation results obtained from Matlab-Simulink tools are presented. In summary, design considerations in building the SST based DC-fast charger in a 1-kW power level are presented which can be scaled up to the desired power level according to the requirements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
LED lighting as energy management tool through correlation analysis of daily electricity demand and supply curve Toward building energy management: Electric analog modeling for thermal behavior simulation Using double Fed induction generator to enhance voltage stability and solving economic issue Modeling and analysis of an integrated AC-DC network under AC and DC faults Adaptive virtual impedance control scheme to eliminate reactive power sharing errors in islanded microgrid
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1