分布式系统中作业的最后期限调度程序

Quentin Perret, Gabriel Charlemagne, Stelios Sotiriadis, N. Bessis
{"title":"分布式系统中作业的最后期限调度程序","authors":"Quentin Perret, Gabriel Charlemagne, Stelios Sotiriadis, N. Bessis","doi":"10.1109/WAINA.2013.194","DOIUrl":null,"url":null,"abstract":"This study presents a soft deadline scheduler for distributed systems that aims of exploring data locality management. In Hadoop, neither the Fair Scheduler nor the Capacity Scheduler takes care about deadlines defined by the user for a job. Our algorithm, named as Cloud Least Laxity First (CLLF), minimizes the extra-cost implied from tasks that are executed over a cloud setting by ordering each of which using its laxity and locality. By using our deadline scheduling algorithm, we demonstrate prosperous performance, as the number of available nodes needed in a cluster in order to meet all the deadlines is minimized while the total execution time of the job remains in acceptable levels. To achieve this, we compare the ability of our algorithm to meet deadlines with the Time Shared and the Space Shared scheduling algorithms. At last we implement our solution in the CloudSim simulation framework for producing the experimental analysis.","PeriodicalId":359251,"journal":{"name":"2013 27th International Conference on Advanced Information Networking and Applications Workshops","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"A Deadline Scheduler for Jobs in Distributed Systems\",\"authors\":\"Quentin Perret, Gabriel Charlemagne, Stelios Sotiriadis, N. Bessis\",\"doi\":\"10.1109/WAINA.2013.194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents a soft deadline scheduler for distributed systems that aims of exploring data locality management. In Hadoop, neither the Fair Scheduler nor the Capacity Scheduler takes care about deadlines defined by the user for a job. Our algorithm, named as Cloud Least Laxity First (CLLF), minimizes the extra-cost implied from tasks that are executed over a cloud setting by ordering each of which using its laxity and locality. By using our deadline scheduling algorithm, we demonstrate prosperous performance, as the number of available nodes needed in a cluster in order to meet all the deadlines is minimized while the total execution time of the job remains in acceptable levels. To achieve this, we compare the ability of our algorithm to meet deadlines with the Time Shared and the Space Shared scheduling algorithms. At last we implement our solution in the CloudSim simulation framework for producing the experimental analysis.\",\"PeriodicalId\":359251,\"journal\":{\"name\":\"2013 27th International Conference on Advanced Information Networking and Applications Workshops\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 27th International Conference on Advanced Information Networking and Applications Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WAINA.2013.194\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 27th International Conference on Advanced Information Networking and Applications Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WAINA.2013.194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

本文提出了一种分布式系统的软截止日期调度程序,旨在探索数据局部性管理。在Hadoop中,Fair Scheduler和Capacity Scheduler都不关心用户为作业定义的截止日期。我们的算法名为Cloud Least Laxity First (CLLF),它通过使用松散性和局部性对每个任务进行排序,从而最大限度地减少在云设置上执行的任务所隐含的额外成本。通过使用我们的截止日期调度算法,我们展示了良好的性能,因为集群中满足所有截止日期所需的可用节点数量被最小化,而作业的总执行时间保持在可接受的水平。为了实现这一点,我们比较了我们的算法与时间共享和空间共享调度算法满足最后期限的能力。最后,我们在CloudSim仿真框架中实现了我们的解决方案,并进行了实验分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Deadline Scheduler for Jobs in Distributed Systems
This study presents a soft deadline scheduler for distributed systems that aims of exploring data locality management. In Hadoop, neither the Fair Scheduler nor the Capacity Scheduler takes care about deadlines defined by the user for a job. Our algorithm, named as Cloud Least Laxity First (CLLF), minimizes the extra-cost implied from tasks that are executed over a cloud setting by ordering each of which using its laxity and locality. By using our deadline scheduling algorithm, we demonstrate prosperous performance, as the number of available nodes needed in a cluster in order to meet all the deadlines is minimized while the total execution time of the job remains in acceptable levels. To achieve this, we compare the ability of our algorithm to meet deadlines with the Time Shared and the Space Shared scheduling algorithms. At last we implement our solution in the CloudSim simulation framework for producing the experimental analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
WiMAX-WLAN Vehicle-to-Infrastructure Network Architecture during Fast Handover Process RFID Tracking for Urban Transportation Using EPCGlobal-based WebServices An Effective Attack Detection Approach in Wireless Mesh Networks Privacy Enhanced and Computationally Efficient HSK-AKA LTE Scheme On Scheduling Real-Time Multi-item Queries in Multi-RSU Vehicular Ad Hoc Networks (VANETs)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1