用于增强WEC性能预测的混合线性势流-机器学习模型

C. Eskilsson, Sepideh Pashami, Anders Holst, Johannes Palm
{"title":"用于增强WEC性能预测的混合线性势流-机器学习模型","authors":"C. Eskilsson, Sepideh Pashami, Anders Holst, Johannes Palm","doi":"10.36688/ewtec-2023-321","DOIUrl":null,"url":null,"abstract":"Numerical models based on the linear potential flow equations are of paramount importance in the design of wave energy converters (WECs). Over the years methods such as wave stretching, nonlinear Froude-Krylov and Morrison drag have been developed to overcome the short-comings of the underlying assumptions of small amplitude wave, small motion and inviscous flow. In this work we present a different approach to enhance the performance of the linear method: a hybrid linear potential flow – machine learning (LPF-ML) model. A hierarchy of high-fidelity models – Reynolds-Averaged Navier-Stokes, Euler and fully nonlinear potential flow – is used to create training data for correction factors targeting nonlinear hydrodynamics, pressure drag and skin friction, respectively. Long short-term memory (LSTM) networks are then trained and added to the LPF model. LSTM networks are heavy to train but fast to evaluate so the computational efficiency of the LPF model is kept high. Simple decay tests of generic bodies (sphere, box, etc) are used to validate the LPF-ML model. Finally, the LPF-ML is applied to a model-scale point-absorber WEC to assess the power production.","PeriodicalId":201789,"journal":{"name":"Proceedings of the European Wave and Tidal Energy Conference","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid linear potential flow - machine learning model for enhanced prediction of WEC performance\",\"authors\":\"C. Eskilsson, Sepideh Pashami, Anders Holst, Johannes Palm\",\"doi\":\"10.36688/ewtec-2023-321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Numerical models based on the linear potential flow equations are of paramount importance in the design of wave energy converters (WECs). Over the years methods such as wave stretching, nonlinear Froude-Krylov and Morrison drag have been developed to overcome the short-comings of the underlying assumptions of small amplitude wave, small motion and inviscous flow. In this work we present a different approach to enhance the performance of the linear method: a hybrid linear potential flow – machine learning (LPF-ML) model. A hierarchy of high-fidelity models – Reynolds-Averaged Navier-Stokes, Euler and fully nonlinear potential flow – is used to create training data for correction factors targeting nonlinear hydrodynamics, pressure drag and skin friction, respectively. Long short-term memory (LSTM) networks are then trained and added to the LPF model. LSTM networks are heavy to train but fast to evaluate so the computational efficiency of the LPF model is kept high. Simple decay tests of generic bodies (sphere, box, etc) are used to validate the LPF-ML model. Finally, the LPF-ML is applied to a model-scale point-absorber WEC to assess the power production.\",\"PeriodicalId\":201789,\"journal\":{\"name\":\"Proceedings of the European Wave and Tidal Energy Conference\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the European Wave and Tidal Energy Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36688/ewtec-2023-321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the European Wave and Tidal Energy Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36688/ewtec-2023-321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于线性势流方程的数值模型在波浪能转换器的设计中具有至关重要的意义。多年来,波浪拉伸、非线性Froude-Krylov和Morrison阻力等方法已经发展起来,以克服小振幅波、小运动和非粘性流动的基本假设的缺点。在这项工作中,我们提出了一种不同的方法来增强线性方法的性能:混合线性势流-机器学习(LPF-ML)模型。高保真度模型——reynolds - average Navier-Stokes模型、Euler模型和全非线性势流模型——分别用于为非线性流体动力学、压力阻力和表面摩擦校正因子创建训练数据。然后训练长短期记忆(LSTM)网络并将其添加到LPF模型中。LSTM网络训练量大,但评估速度快,因此LPF模型的计算效率很高。一般物体(球体、箱形体等)的简单衰变试验用于验证LPF-ML模型。最后,将LPF-ML应用于模型尺度的点吸收体WEC来评估发电量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hybrid linear potential flow - machine learning model for enhanced prediction of WEC performance
Numerical models based on the linear potential flow equations are of paramount importance in the design of wave energy converters (WECs). Over the years methods such as wave stretching, nonlinear Froude-Krylov and Morrison drag have been developed to overcome the short-comings of the underlying assumptions of small amplitude wave, small motion and inviscous flow. In this work we present a different approach to enhance the performance of the linear method: a hybrid linear potential flow – machine learning (LPF-ML) model. A hierarchy of high-fidelity models – Reynolds-Averaged Navier-Stokes, Euler and fully nonlinear potential flow – is used to create training data for correction factors targeting nonlinear hydrodynamics, pressure drag and skin friction, respectively. Long short-term memory (LSTM) networks are then trained and added to the LPF model. LSTM networks are heavy to train but fast to evaluate so the computational efficiency of the LPF model is kept high. Simple decay tests of generic bodies (sphere, box, etc) are used to validate the LPF-ML model. Finally, the LPF-ML is applied to a model-scale point-absorber WEC to assess the power production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Open Sea Trial of a Wave-Energy Converter at Tuticorin Port – Challenges comprehensive assessment tool for low-TRL current energy converters Wave energy communication and social opposition Choosing wave energy devices for community-led marine energy development Tidal turbulence in medium depth water, primarily a model study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1