{"title":"旧瓶新酒:机器学习组件的n -版本编程","authors":"A. Gujarati, S. Gopalakrishnan, K. Pattabiraman","doi":"10.1109/ISSREW51248.2020.00086","DOIUrl":null,"url":null,"abstract":"We revisit N-version programming in the context of machine learning (ML). Generating N versions of an ML component does not require additional programming effort, but only extra computations. This opens up the possibility of executing hundreds of diverse replicas, which, if carefully deployed, can improve their overall reliability by a significant margin. We use mathematical modeling to evaluate these benefits.","PeriodicalId":202247,"journal":{"name":"2020 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"New Wine in an Old Bottle: N-Version Programming for Machine Learning Components\",\"authors\":\"A. Gujarati, S. Gopalakrishnan, K. Pattabiraman\",\"doi\":\"10.1109/ISSREW51248.2020.00086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We revisit N-version programming in the context of machine learning (ML). Generating N versions of an ML component does not require additional programming effort, but only extra computations. This opens up the possibility of executing hundreds of diverse replicas, which, if carefully deployed, can improve their overall reliability by a significant margin. We use mathematical modeling to evaluate these benefits.\",\"PeriodicalId\":202247,\"journal\":{\"name\":\"2020 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSREW51248.2020.00086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSREW51248.2020.00086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
New Wine in an Old Bottle: N-Version Programming for Machine Learning Components
We revisit N-version programming in the context of machine learning (ML). Generating N versions of an ML component does not require additional programming effort, but only extra computations. This opens up the possibility of executing hundreds of diverse replicas, which, if carefully deployed, can improve their overall reliability by a significant margin. We use mathematical modeling to evaluate these benefits.