恶意软件API调用序列关键特征识别技术

V. Voronin, A. Morozov
{"title":"恶意软件API调用序列关键特征识别技术","authors":"V. Voronin, A. Morozov","doi":"10.17212/2782-2001-2021-3-37-52","DOIUrl":null,"url":null,"abstract":"Today, almost everyone is faced with computer security problems in one or another way. Antivirus programs are used to control threats to the security of malicious software. Conventional methods for detecting malware are no longer effective enough; nowadays, neural networks and behavioral analysis technology have begun to be used for these purposes. Analyzing the behavior of programs is a difficult task, since there is no clear sequence of actions to accurately identify a program as malicious. In addition, such programs use measures to resist such detection, for example, noise masking the sequence of their work with meaningless actions. There is also the problem of uniquely identifying the class of malware due to the fact that malware can use similar methods, while being assigned to different classes. In this paper, it is proposed to use NLP methods, such as word embedding, and LDA in relation to the problems of analyzing malware API calls sequences in order to reveal the presence of semantic dependencies and assess the effectiveness of the application of these methods. The results obtained indicate the possibility of identifying the key features of malware behavior, which in the future will significantly improve the technology for detecting and identifying such programs.","PeriodicalId":292298,"journal":{"name":"Analysis and data processing systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Technology of key feature identification in malware API calls sequences\",\"authors\":\"V. Voronin, A. Morozov\",\"doi\":\"10.17212/2782-2001-2021-3-37-52\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today, almost everyone is faced with computer security problems in one or another way. Antivirus programs are used to control threats to the security of malicious software. Conventional methods for detecting malware are no longer effective enough; nowadays, neural networks and behavioral analysis technology have begun to be used for these purposes. Analyzing the behavior of programs is a difficult task, since there is no clear sequence of actions to accurately identify a program as malicious. In addition, such programs use measures to resist such detection, for example, noise masking the sequence of their work with meaningless actions. There is also the problem of uniquely identifying the class of malware due to the fact that malware can use similar methods, while being assigned to different classes. In this paper, it is proposed to use NLP methods, such as word embedding, and LDA in relation to the problems of analyzing malware API calls sequences in order to reveal the presence of semantic dependencies and assess the effectiveness of the application of these methods. The results obtained indicate the possibility of identifying the key features of malware behavior, which in the future will significantly improve the technology for detecting and identifying such programs.\",\"PeriodicalId\":292298,\"journal\":{\"name\":\"Analysis and data processing systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and data processing systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17212/2782-2001-2021-3-37-52\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and data processing systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17212/2782-2001-2021-3-37-52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

今天,几乎每个人都面临着这样或那样的计算机安全问题。防病毒程序用于控制恶意软件对安全的威胁。检测恶意软件的传统方法不再有效;如今,神经网络和行为分析技术已经开始用于这些目的。分析程序的行为是一项困难的任务,因为没有明确的操作序列来准确地识别程序为恶意程序。此外,这些程序使用一些措施来抵抗这种检测,例如,噪声用无意义的动作掩盖了它们工作的顺序。由于恶意软件可以使用相似的方法,而被分配到不同的类,因此还存在唯一识别恶意软件类别的问题。本文提出使用NLP方法,如词嵌入和LDA来分析恶意软件API调用序列的问题,以揭示语义依赖的存在并评估这些方法应用的有效性。所获得的结果表明,识别恶意软件行为的关键特征是可能的,这将在未来显著提高检测和识别此类程序的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Technology of key feature identification in malware API calls sequences
Today, almost everyone is faced with computer security problems in one or another way. Antivirus programs are used to control threats to the security of malicious software. Conventional methods for detecting malware are no longer effective enough; nowadays, neural networks and behavioral analysis technology have begun to be used for these purposes. Analyzing the behavior of programs is a difficult task, since there is no clear sequence of actions to accurately identify a program as malicious. In addition, such programs use measures to resist such detection, for example, noise masking the sequence of their work with meaningless actions. There is also the problem of uniquely identifying the class of malware due to the fact that malware can use similar methods, while being assigned to different classes. In this paper, it is proposed to use NLP methods, such as word embedding, and LDA in relation to the problems of analyzing malware API calls sequences in order to reveal the presence of semantic dependencies and assess the effectiveness of the application of these methods. The results obtained indicate the possibility of identifying the key features of malware behavior, which in the future will significantly improve the technology for detecting and identifying such programs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Determination of the dependence of the apparent density of ceramic samples on the molding moisture content of clay raw materials and compaction pressure based on regression models Development of a control and unit positioning system for a mechatronic rehabilitation complex A methodology for selecting algorithms for optimizing the resilience of energy infrastructures Analysis of operator eye movement characteristics to determine the degree of fatigue Study of the issues of methods for determining the type of content in incoming traffic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1