使用ResNet-50卷积神经网络在组织病理学图像中诊断乳腺癌

Q. A. Al-Haija, A. Adebanjo
{"title":"使用ResNet-50卷积神经网络在组织病理学图像中诊断乳腺癌","authors":"Q. A. Al-Haija, A. Adebanjo","doi":"10.1109/IEMTRONICS51293.2020.9216455","DOIUrl":null,"url":null,"abstract":"Breast cancer disease is the second most common world cause of cancer death in women. However, the early diagnostics and detection can provide a significant chance for correct treatment and survival. In this work, we propose an accurate and inclusive computational breast cancer diagnosis framework using ResNet-50 convolutional neural network to classify histopathological microscopy images. The proposed model employs transfer learning technique of the powerful ResNet-50 CNN pretrained on ImageNet to train and classify BreakHis dataset into benign or malignant. The simulation results showed that our proposed model achieves exceptional classification accuracy of 99% outperforming other compared models trained on the same dataset.","PeriodicalId":269697,"journal":{"name":"2020 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"62","resultStr":"{\"title\":\"Breast Cancer Diagnosis in Histopathological Images Using ResNet-50 Convolutional Neural Network\",\"authors\":\"Q. A. Al-Haija, A. Adebanjo\",\"doi\":\"10.1109/IEMTRONICS51293.2020.9216455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Breast cancer disease is the second most common world cause of cancer death in women. However, the early diagnostics and detection can provide a significant chance for correct treatment and survival. In this work, we propose an accurate and inclusive computational breast cancer diagnosis framework using ResNet-50 convolutional neural network to classify histopathological microscopy images. The proposed model employs transfer learning technique of the powerful ResNet-50 CNN pretrained on ImageNet to train and classify BreakHis dataset into benign or malignant. The simulation results showed that our proposed model achieves exceptional classification accuracy of 99% outperforming other compared models trained on the same dataset.\",\"PeriodicalId\":269697,\"journal\":{\"name\":\"2020 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"62\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEMTRONICS51293.2020.9216455\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMTRONICS51293.2020.9216455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 62

摘要

乳腺癌是世界上导致妇女癌症死亡的第二大常见原因。然而,早期诊断和发现可以为正确的治疗和生存提供重要的机会。在这项工作中,我们提出了一个准确和包容的计算乳腺癌诊断框架,使用ResNet-50卷积神经网络对组织病理显微镜图像进行分类。该模型采用在ImageNet上预训练的强大的ResNet-50 CNN的迁移学习技术,对BreakHis数据集进行训练并将其分类为良性或恶性。仿真结果表明,该模型的分类准确率达到99%,优于在相同数据集上训练的其他模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Breast Cancer Diagnosis in Histopathological Images Using ResNet-50 Convolutional Neural Network
Breast cancer disease is the second most common world cause of cancer death in women. However, the early diagnostics and detection can provide a significant chance for correct treatment and survival. In this work, we propose an accurate and inclusive computational breast cancer diagnosis framework using ResNet-50 convolutional neural network to classify histopathological microscopy images. The proposed model employs transfer learning technique of the powerful ResNet-50 CNN pretrained on ImageNet to train and classify BreakHis dataset into benign or malignant. The simulation results showed that our proposed model achieves exceptional classification accuracy of 99% outperforming other compared models trained on the same dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Wi-Fi Based Indoor Positioning and Navigation System (IPS/INS) Design of Universal logic gates and Majority Gate Using One clock pulse based CMOS Capacitor Coupled Threshold Logic Anomalous Enhancement of Volume and Surface Refractive Index Sensitivity of Fiber Bragg Grating Sensors with Deposition of Gold Nanoparticles Multistatic Radar Imaging for Traffic Monitoring A Study of Variable Structure and Sliding Mode Filters for Robust Estimation of Mechatronic Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1