关于CEO问题中稀疏矩阵码的渐近性质

T. Murayama
{"title":"关于CEO问题中稀疏矩阵码的渐近性质","authors":"T. Murayama","doi":"10.1109/ISIT.2005.1523770","DOIUrl":null,"url":null,"abstract":"This paper provides the asymptotic analysis for the sparse matrix codes in the CEO problem. In this problem, a firm's chief executive officer (CEO) is interested in the data sequence which cannot be observed directly. Therefore, the CEO deploys a team of L agents who encodes his/her noisy observation of the data sequence without sharing any information. The CEO then collects all the L codeword sequences to recover the data sequence, where the combined data rate R at which the agents can communicate with the CEO is limited. In our scenario, each agent is supposed to use his/her LDPC-like code for lossy compression, while the CEO estimates each data bit by a majority vote of the L reproductions. The replica ansatz and the central limit theorem allow us to derive an analytical description of the problem in the case of large L. Here, the expected error frequency can be numerically evaluated for a given R, indicating that the optimum decentralization strategy depends largely on the bandwidth, as well as the observation noise level","PeriodicalId":166130,"journal":{"name":"Proceedings. International Symposium on Information Theory, 2005. ISIT 2005.","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the asymptotic properties of sparse matrix codes in the CEO problem\",\"authors\":\"T. Murayama\",\"doi\":\"10.1109/ISIT.2005.1523770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper provides the asymptotic analysis for the sparse matrix codes in the CEO problem. In this problem, a firm's chief executive officer (CEO) is interested in the data sequence which cannot be observed directly. Therefore, the CEO deploys a team of L agents who encodes his/her noisy observation of the data sequence without sharing any information. The CEO then collects all the L codeword sequences to recover the data sequence, where the combined data rate R at which the agents can communicate with the CEO is limited. In our scenario, each agent is supposed to use his/her LDPC-like code for lossy compression, while the CEO estimates each data bit by a majority vote of the L reproductions. The replica ansatz and the central limit theorem allow us to derive an analytical description of the problem in the case of large L. Here, the expected error frequency can be numerically evaluated for a given R, indicating that the optimum decentralization strategy depends largely on the bandwidth, as well as the observation noise level\",\"PeriodicalId\":166130,\"journal\":{\"name\":\"Proceedings. International Symposium on Information Theory, 2005. ISIT 2005.\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. International Symposium on Information Theory, 2005. ISIT 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2005.1523770\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Symposium on Information Theory, 2005. ISIT 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2005.1523770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文给出了CEO问题中稀疏矩阵码的渐近分析方法。在这个问题中,公司的首席执行官(CEO)对不能直接观察到的数据序列感兴趣。因此,CEO部署了一个由L个代理组成的团队,他们对他/她对数据序列的嘈杂观察进行编码,而不共享任何信息。CEO收集所有L码字序列恢复数据序列,其中代理与CEO通信的组合数据速率R是有限的。在我们的场景中,每个代理都应该使用他/她的ldpc类代码进行有损压缩,而CEO则通过L个副本的多数投票来估计每个数据位。复制ansatz和中心极限定理使我们能够在大l的情况下推导出问题的分析描述。在这里,对于给定的R,可以对预期错误频率进行数值评估,这表明最佳去中心化策略在很大程度上取决于带宽,以及观测噪声水平
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the asymptotic properties of sparse matrix codes in the CEO problem
This paper provides the asymptotic analysis for the sparse matrix codes in the CEO problem. In this problem, a firm's chief executive officer (CEO) is interested in the data sequence which cannot be observed directly. Therefore, the CEO deploys a team of L agents who encodes his/her noisy observation of the data sequence without sharing any information. The CEO then collects all the L codeword sequences to recover the data sequence, where the combined data rate R at which the agents can communicate with the CEO is limited. In our scenario, each agent is supposed to use his/her LDPC-like code for lossy compression, while the CEO estimates each data bit by a majority vote of the L reproductions. The replica ansatz and the central limit theorem allow us to derive an analytical description of the problem in the case of large L. Here, the expected error frequency can be numerically evaluated for a given R, indicating that the optimum decentralization strategy depends largely on the bandwidth, as well as the observation noise level
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Upper bounds on the rate of LDPC codes as a function of minimum distance A wireless network can achieve maximum throughput without each node meeting all others Optimal linear decentralized estimation in a bandwidth constrained sensor network Near BER optimal partial response codes Bounds on mutual information rates of noisy channels with timing errors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1