基于概率特征分组的快速车辆检测及其在车辆跟踪中的应用

Zuwhan Kim, Jitendra Malik
{"title":"基于概率特征分组的快速车辆检测及其在车辆跟踪中的应用","authors":"Zuwhan Kim, Jitendra Malik","doi":"10.1109/ICCV.2003.1238392","DOIUrl":null,"url":null,"abstract":"Generating vehicle trajectories from video data is an important application of ITS (intelligent transportation systems). We introduce a new tracking approach which uses model-based 3-D vehicle detection and description algorithm. Our vehicle detection and description algorithm is based on a probabilistic line feature grouping, and it is faster (by up to an order of magnitude) and more flexible than previous image-based algorithms. We present the system implementation and the vehicle detection and tracking results.","PeriodicalId":131580,"journal":{"name":"Proceedings Ninth IEEE International Conference on Computer Vision","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"186","resultStr":"{\"title\":\"Fast vehicle detection with probabilistic feature grouping and its application to vehicle tracking\",\"authors\":\"Zuwhan Kim, Jitendra Malik\",\"doi\":\"10.1109/ICCV.2003.1238392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generating vehicle trajectories from video data is an important application of ITS (intelligent transportation systems). We introduce a new tracking approach which uses model-based 3-D vehicle detection and description algorithm. Our vehicle detection and description algorithm is based on a probabilistic line feature grouping, and it is faster (by up to an order of magnitude) and more flexible than previous image-based algorithms. We present the system implementation and the vehicle detection and tracking results.\",\"PeriodicalId\":131580,\"journal\":{\"name\":\"Proceedings Ninth IEEE International Conference on Computer Vision\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"186\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Ninth IEEE International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2003.1238392\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Ninth IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2003.1238392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 186

摘要

从视频数据中生成车辆轨迹是智能交通系统的一个重要应用。提出了一种基于模型的三维车辆检测与描述算法的跟踪方法。我们的车辆检测和描述算法基于概率线特征分组,它比以前基于图像的算法更快(高达一个数量级),也更灵活。给出了系统的实现和车辆检测与跟踪结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fast vehicle detection with probabilistic feature grouping and its application to vehicle tracking
Generating vehicle trajectories from video data is an important application of ITS (intelligent transportation systems). We introduce a new tracking approach which uses model-based 3-D vehicle detection and description algorithm. Our vehicle detection and description algorithm is based on a probabilistic line feature grouping, and it is faster (by up to an order of magnitude) and more flexible than previous image-based algorithms. We present the system implementation and the vehicle detection and tracking results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fusion of static and dynamic body biometrics for gait recognition Selection of scale-invariant parts for object class recognition Information theoretic focal length selection for real-time active 3D object tracking A multi-scale generative model for animate shapes and parts Integrated edge and junction detection with the boundary tensor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1