统一模型分析(PUMA)性能

M. Woodside, D. Petriu, D. Petriu, Hui Shen, Toqeer Israr, J. Merseguer
{"title":"统一模型分析(PUMA)性能","authors":"M. Woodside, D. Petriu, D. Petriu, Hui Shen, Toqeer Israr, J. Merseguer","doi":"10.1145/1071021.1071022","DOIUrl":null,"url":null,"abstract":"Evaluation of non-functional properties of a design (such as performance, dependability, security, etc.) can be enabled by design annotations specific to the property to be evaluated. Performance properties, for instance, can be annotated on UML designs by using the \"UML Profile for Schedulability, Performance and Time (SPT)\". However the communication between the design description in UML and the tools used for non-functional properties evaluation requires support, particularly for performance where there are many alternative performance analysis tools that might be applied. This paper describes a tool architecture called PUMA, which provides a unified interface between different kinds of design information and different kinds of performance models, for example Markov models, stochastic Petri nets and process algebras, queues and layered queues.The paper concentrates on the creation of performance models. The unified interface of PUMA is centered on an intermediate model called Core Scenario Model (CSM), which is extracted from the annotated design model. Experience shows that CSM is also necessary for cleaning and auditing the design information, and providing default interpretations in case it is incomplete, before creating a performance model.","PeriodicalId":235512,"journal":{"name":"Workshop on Software and Performance","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"224","resultStr":"{\"title\":\"Performance by unified model analysis (PUMA)\",\"authors\":\"M. Woodside, D. Petriu, D. Petriu, Hui Shen, Toqeer Israr, J. Merseguer\",\"doi\":\"10.1145/1071021.1071022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Evaluation of non-functional properties of a design (such as performance, dependability, security, etc.) can be enabled by design annotations specific to the property to be evaluated. Performance properties, for instance, can be annotated on UML designs by using the \\\"UML Profile for Schedulability, Performance and Time (SPT)\\\". However the communication between the design description in UML and the tools used for non-functional properties evaluation requires support, particularly for performance where there are many alternative performance analysis tools that might be applied. This paper describes a tool architecture called PUMA, which provides a unified interface between different kinds of design information and different kinds of performance models, for example Markov models, stochastic Petri nets and process algebras, queues and layered queues.The paper concentrates on the creation of performance models. The unified interface of PUMA is centered on an intermediate model called Core Scenario Model (CSM), which is extracted from the annotated design model. Experience shows that CSM is also necessary for cleaning and auditing the design information, and providing default interpretations in case it is incomplete, before creating a performance model.\",\"PeriodicalId\":235512,\"journal\":{\"name\":\"Workshop on Software and Performance\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"224\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Software and Performance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1071021.1071022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Software and Performance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1071021.1071022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 224

摘要

可以通过特定于要评估的属性的设计注释来评估设计的非功能属性(如性能、可靠性、安全性等)。例如,性能属性可以通过使用“用于可调度性、性能和时间(SPT)的UML概要文件”在UML设计上进行注释。然而,UML中的设计描述和用于非功能属性评估的工具之间的通信需要支持,特别是对于可能应用许多可选性能分析工具的性能。本文描述了一种名为PUMA的工具体系结构,它提供了不同类型的设计信息与不同类型的性能模型(如马尔可夫模型、随机Petri网和过程代数、队列和分层队列)之间的统一接口。本文的重点是性能模型的创建。PUMA的统一接口以一个称为核心场景模型(CSM)的中间模型为中心,该模型是从带注释的设计模型中提取出来的。经验表明,在创建性能模型之前,CSM对于清理和审计设计信息以及在不完整的情况下提供默认解释也是必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance by unified model analysis (PUMA)
Evaluation of non-functional properties of a design (such as performance, dependability, security, etc.) can be enabled by design annotations specific to the property to be evaluated. Performance properties, for instance, can be annotated on UML designs by using the "UML Profile for Schedulability, Performance and Time (SPT)". However the communication between the design description in UML and the tools used for non-functional properties evaluation requires support, particularly for performance where there are many alternative performance analysis tools that might be applied. This paper describes a tool architecture called PUMA, which provides a unified interface between different kinds of design information and different kinds of performance models, for example Markov models, stochastic Petri nets and process algebras, queues and layered queues.The paper concentrates on the creation of performance models. The unified interface of PUMA is centered on an intermediate model called Core Scenario Model (CSM), which is extracted from the annotated design model. Experience shows that CSM is also necessary for cleaning and auditing the design information, and providing default interpretations in case it is incomplete, before creating a performance model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Beyond Simulation: Composing Scalability, Elasticity, and Efficiency Analyses from Preexisting Analysis Results Performance Antipattern Detection through fUML Model Library Runtime Performance Challenges in Big Data Systems Integrating Formal Timing Analysis in the Real-Time Software Development Process Challenges in Integrating the Analysis of Multiple Non-Functional Properties in Model-Driven Software Engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1