基于hdp模型的篮球比赛模拟与结果预测

Xin Du, Weihong Cai
{"title":"基于hdp模型的篮球比赛模拟与结果预测","authors":"Xin Du, Weihong Cai","doi":"10.1109/ICDH.2018.00042","DOIUrl":null,"url":null,"abstract":"We used HDP-based models to model the progression of a basketball game. As known to all, the hidden Markov model can be used for analyzing sequences of the game's content. By introducing Hierarchical Dirichlet Processes on feature extraction and HMMs, we can tackle down the challenges of unknown numbers of mixtures in both models by resorting to nonparametric approach. We employ variational inference for model calculation and cluster the extracted rounds of a basketball match in the form of HMM parameters to forecast the overcome. The proposed scheme is then verified by comparing with other commonly used forecasting approaches: logit regression of the outcome, Naive Bayes method, and Neural Networks. We found that HDP-based models are appropriate for modeling a basketball match and produces more accurate predictions.","PeriodicalId":117854,"journal":{"name":"2018 7th International Conference on Digital Home (ICDH)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Simulating a Basketball Game with HDP-Based Models and Forecasting the Outcome\",\"authors\":\"Xin Du, Weihong Cai\",\"doi\":\"10.1109/ICDH.2018.00042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We used HDP-based models to model the progression of a basketball game. As known to all, the hidden Markov model can be used for analyzing sequences of the game's content. By introducing Hierarchical Dirichlet Processes on feature extraction and HMMs, we can tackle down the challenges of unknown numbers of mixtures in both models by resorting to nonparametric approach. We employ variational inference for model calculation and cluster the extracted rounds of a basketball match in the form of HMM parameters to forecast the overcome. The proposed scheme is then verified by comparing with other commonly used forecasting approaches: logit regression of the outcome, Naive Bayes method, and Neural Networks. We found that HDP-based models are appropriate for modeling a basketball match and produces more accurate predictions.\",\"PeriodicalId\":117854,\"journal\":{\"name\":\"2018 7th International Conference on Digital Home (ICDH)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 7th International Conference on Digital Home (ICDH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDH.2018.00042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th International Conference on Digital Home (ICDH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDH.2018.00042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们使用基于hdp的模型来模拟篮球比赛的进程。众所周知,隐马尔可夫模型可以用于分析游戏内容的序列。通过在特征提取和hmm上引入层次狄利克雷过程,我们可以利用非参数方法解决两种模型中未知数量混合的挑战。我们采用变分推理进行模型计算,并将抽取到的篮球赛回合数以HMM参数的形式聚类来预测克服。然后通过与其他常用的预测方法(结果的logit回归、朴素贝叶斯方法和神经网络)进行比较来验证所提出的方案。我们发现基于hdp的模型适用于篮球比赛的建模,并产生更准确的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Simulating a Basketball Game with HDP-Based Models and Forecasting the Outcome
We used HDP-based models to model the progression of a basketball game. As known to all, the hidden Markov model can be used for analyzing sequences of the game's content. By introducing Hierarchical Dirichlet Processes on feature extraction and HMMs, we can tackle down the challenges of unknown numbers of mixtures in both models by resorting to nonparametric approach. We employ variational inference for model calculation and cluster the extracted rounds of a basketball match in the form of HMM parameters to forecast the overcome. The proposed scheme is then verified by comparing with other commonly used forecasting approaches: logit regression of the outcome, Naive Bayes method, and Neural Networks. We found that HDP-based models are appropriate for modeling a basketball match and produces more accurate predictions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive Weighted Deformable Part Model for Object Detection A Wifi Positioning Method Based on Stack Auto Encoder Design and Implementation of Web-Based Dynamic Mathematics Intelligence Education Platform Domain Knowledge Driven Deep Unrolling for Rain Removal from Single Image A New Image Block Encryption Method Based on Chaotic Map and DNA Encoding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1