基于拉丁超立方体抽样的配网随机潮流分析

Jun Cao, W. Du, Haifeng F. Wang, L. Xiao
{"title":"基于拉丁超立方体抽样的配网随机潮流分析","authors":"Jun Cao, W. Du, Haifeng F. Wang, L. Xiao","doi":"10.1109/ISGTEurope.2011.6162624","DOIUrl":null,"url":null,"abstract":"The paper adopts the Latin Hypercube Sampling with Dependence (LHSD) method to solve the Probabilistic Load Flow (PLF) problem with correlated random variables for distribution networks. The proposed method is investigated using modified IEEE 34 distribution system with random loads, Wind power and Photovoltaics (PVs). Three different cases are studied and the comparison results shows that the LHSD method handles correlations efficiently and presents an accurate simulation result with a much smaller simulation size. The method has the potential to be applied in many power system probabilistic problems.","PeriodicalId":419250,"journal":{"name":"2011 2nd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Probabilistic load flow using latin hypercube sampling with dependence for distribution networks\",\"authors\":\"Jun Cao, W. Du, Haifeng F. Wang, L. Xiao\",\"doi\":\"10.1109/ISGTEurope.2011.6162624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper adopts the Latin Hypercube Sampling with Dependence (LHSD) method to solve the Probabilistic Load Flow (PLF) problem with correlated random variables for distribution networks. The proposed method is investigated using modified IEEE 34 distribution system with random loads, Wind power and Photovoltaics (PVs). Three different cases are studied and the comparison results shows that the LHSD method handles correlations efficiently and presents an accurate simulation result with a much smaller simulation size. The method has the potential to be applied in many power system probabilistic problems.\",\"PeriodicalId\":419250,\"journal\":{\"name\":\"2011 2nd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 2nd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISGTEurope.2011.6162624\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 2nd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGTEurope.2011.6162624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文采用拉丁相关性超立方抽样(LHSD)方法求解了配电网随机变量相关的概率潮流问题。采用改进的IEEE 34随机负荷、风电和光伏配电系统对该方法进行了研究。对比结果表明,LHSD方法能有效地处理相关性,在较小的模拟规模下得到准确的模拟结果。该方法具有应用于电力系统概率问题的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Probabilistic load flow using latin hypercube sampling with dependence for distribution networks
The paper adopts the Latin Hypercube Sampling with Dependence (LHSD) method to solve the Probabilistic Load Flow (PLF) problem with correlated random variables for distribution networks. The proposed method is investigated using modified IEEE 34 distribution system with random loads, Wind power and Photovoltaics (PVs). Three different cases are studied and the comparison results shows that the LHSD method handles correlations efficiently and presents an accurate simulation result with a much smaller simulation size. The method has the potential to be applied in many power system probabilistic problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Power quality assessment of the Bogotá distribution network focused on voltage sag analysis Increasing security of supply by the use of a Local Power Controller during large system disturbances Realising the potential of smart grids in LV networks. Part 2: Microgeneration Multi-scale dynamic modeling to maximize demand side management Optimal fault location in distribution systems using distributed disturbance recordings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1