基于高分辨率航拍图像深度学习的海鸟检测

Lynda Ben Boudaoud, F. Maussang, R. Garello, Alexis Chevallier
{"title":"基于高分辨率航拍图像深度学习的海鸟检测","authors":"Lynda Ben Boudaoud, F. Maussang, R. Garello, Alexis Chevallier","doi":"10.1109/OCEANSE.2019.8867242","DOIUrl":null,"url":null,"abstract":"The overarching goal of this paper is to find an automatic bird detection and counting method on aerial images of the ocean. Most of the existing works in the literature are based on heuristic handcrafted feature design, which in most cases affect the effectiveness (the accuracy of classification) and the efficiency (spending much time). In this paper, we propose a method built on a systematic feature learning based classification adopting a new deep Convolutional Neural Network (CNN) architecture. Through this architecture, the feature learning is automated from a multi-dimensional raw input images, by a training step leveraging the JONATHAN dataset via supervised learning. Performances evaluation show that the CNN based architecture classifier achieves an accuracy of 95% on the JONATHAN test data and the overall detection method achieves a classification rate (true positives: birds) of 98% on real images.","PeriodicalId":375793,"journal":{"name":"OCEANS 2019 - Marseille","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Marine Bird Detection Based on Deep Learning using High-Resolution Aerial Images\",\"authors\":\"Lynda Ben Boudaoud, F. Maussang, R. Garello, Alexis Chevallier\",\"doi\":\"10.1109/OCEANSE.2019.8867242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The overarching goal of this paper is to find an automatic bird detection and counting method on aerial images of the ocean. Most of the existing works in the literature are based on heuristic handcrafted feature design, which in most cases affect the effectiveness (the accuracy of classification) and the efficiency (spending much time). In this paper, we propose a method built on a systematic feature learning based classification adopting a new deep Convolutional Neural Network (CNN) architecture. Through this architecture, the feature learning is automated from a multi-dimensional raw input images, by a training step leveraging the JONATHAN dataset via supervised learning. Performances evaluation show that the CNN based architecture classifier achieves an accuracy of 95% on the JONATHAN test data and the overall detection method achieves a classification rate (true positives: birds) of 98% on real images.\",\"PeriodicalId\":375793,\"journal\":{\"name\":\"OCEANS 2019 - Marseille\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OCEANS 2019 - Marseille\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OCEANSE.2019.8867242\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OCEANS 2019 - Marseille","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANSE.2019.8867242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

本文的总体目标是寻找一种基于海洋航空图像的鸟类自动检测和计数方法。现有文献中的大部分工作都是基于启发式的手工特征设计,这在大多数情况下会影响分类的有效性(分类的准确性)和效率(花费大量时间)。在本文中,我们提出了一种基于系统特征学习的分类方法,采用了一种新的深度卷积神经网络(CNN)架构。通过这种架构,通过监督学习利用JONATHAN数据集的训练步骤,从多维原始输入图像中自动学习特征。性能评估表明,基于CNN的架构分类器在JONATHAN测试数据上的准确率达到95%,整体检测方法在真实图像上的分类率(真阳性:鸟类)达到98%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Marine Bird Detection Based on Deep Learning using High-Resolution Aerial Images
The overarching goal of this paper is to find an automatic bird detection and counting method on aerial images of the ocean. Most of the existing works in the literature are based on heuristic handcrafted feature design, which in most cases affect the effectiveness (the accuracy of classification) and the efficiency (spending much time). In this paper, we propose a method built on a systematic feature learning based classification adopting a new deep Convolutional Neural Network (CNN) architecture. Through this architecture, the feature learning is automated from a multi-dimensional raw input images, by a training step leveraging the JONATHAN dataset via supervised learning. Performances evaluation show that the CNN based architecture classifier achieves an accuracy of 95% on the JONATHAN test data and the overall detection method achieves a classification rate (true positives: birds) of 98% on real images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Data-driven Vessel Motion Model for Offshore Access Forecasting Decentralized System Intelligence in Data Driven Networks for Shipping Industrial Applications: Digital Models to Blockchain Technologies Robust 3D Shape Classification Method using Simulated Multi View Sonar Images and Convolutional Nueral Network Weighted Grid Partitioning for Panel-Based Bathymetric SLAM Fishing Spot Detection Using Sea Water Temperature Pattern by Nonlinear Clustering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1