MuSE:用于云应用的多模式可搜索加密

Bernardo Ferreira, J. Leitao, H. Domingos
{"title":"MuSE:用于云应用的多模式可搜索加密","authors":"Bernardo Ferreira, J. Leitao, H. Domingos","doi":"10.1109/SRDS.2018.00029","DOIUrl":null,"url":null,"abstract":"In this paper we tackle the practical challenges of searching encrypted multimodal data (i.e., data containing multiple media formats simultaneously), stored in public cloud servers, with reduced information leakage. To this end we propose MuSE, a Multimodal Searchable Encryption scheme that, by combining only standard cryptographic primitives and symmetric-key block ciphers, allows cloud-backed applications to dynamically store, update, and search multimodal datasets with privacy and efficiency guarantees. As searching encrypted data requires a tradeoff between privacy and efficiency, we also propose a variant of MuSE that resorts to partially homomorphic encryption to further reduce information leakage, but at the cost of additional computational overhead. Both schemes are formally proven secure and experimentally evaluated regarding performance and search precision. Experiments with realistic datasets show that our contributions achieve interesting levels of efficiency and privacy, making MuSE particularly suitable for practical application scenarios.","PeriodicalId":219374,"journal":{"name":"2018 IEEE 37th Symposium on Reliable Distributed Systems (SRDS)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"MuSE: Multimodal Searchable Encryption for Cloud Applications\",\"authors\":\"Bernardo Ferreira, J. Leitao, H. Domingos\",\"doi\":\"10.1109/SRDS.2018.00029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we tackle the practical challenges of searching encrypted multimodal data (i.e., data containing multiple media formats simultaneously), stored in public cloud servers, with reduced information leakage. To this end we propose MuSE, a Multimodal Searchable Encryption scheme that, by combining only standard cryptographic primitives and symmetric-key block ciphers, allows cloud-backed applications to dynamically store, update, and search multimodal datasets with privacy and efficiency guarantees. As searching encrypted data requires a tradeoff between privacy and efficiency, we also propose a variant of MuSE that resorts to partially homomorphic encryption to further reduce information leakage, but at the cost of additional computational overhead. Both schemes are formally proven secure and experimentally evaluated regarding performance and search precision. Experiments with realistic datasets show that our contributions achieve interesting levels of efficiency and privacy, making MuSE particularly suitable for practical application scenarios.\",\"PeriodicalId\":219374,\"journal\":{\"name\":\"2018 IEEE 37th Symposium on Reliable Distributed Systems (SRDS)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 37th Symposium on Reliable Distributed Systems (SRDS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SRDS.2018.00029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 37th Symposium on Reliable Distributed Systems (SRDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SRDS.2018.00029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在本文中,我们解决了搜索加密多模态数据(即同时包含多种媒体格式的数据)的实际挑战,存储在公共云服务器中,减少了信息泄漏。为此,我们提出了MuSE,这是一种多模态可搜索加密方案,通过仅结合标准加密原语和对称密钥分组密码,允许云支持的应用程序动态存储,更新和搜索多模态数据集,同时保证隐私和效率。由于搜索加密数据需要在隐私和效率之间进行权衡,我们还提出了MuSE的一种变体,该变体采用部分同态加密来进一步减少信息泄漏,但代价是额外的计算开销。这两种方案都被正式证明是安全的,并在性能和搜索精度方面进行了实验评估。对真实数据集的实验表明,我们的贡献达到了有趣的效率和隐私水平,使MuSE特别适合实际应用场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MuSE: Multimodal Searchable Encryption for Cloud Applications
In this paper we tackle the practical challenges of searching encrypted multimodal data (i.e., data containing multiple media formats simultaneously), stored in public cloud servers, with reduced information leakage. To this end we propose MuSE, a Multimodal Searchable Encryption scheme that, by combining only standard cryptographic primitives and symmetric-key block ciphers, allows cloud-backed applications to dynamically store, update, and search multimodal datasets with privacy and efficiency guarantees. As searching encrypted data requires a tradeoff between privacy and efficiency, we also propose a variant of MuSE that resorts to partially homomorphic encryption to further reduce information leakage, but at the cost of additional computational overhead. Both schemes are formally proven secure and experimentally evaluated regarding performance and search precision. Experiments with realistic datasets show that our contributions achieve interesting levels of efficiency and privacy, making MuSE particularly suitable for practical application scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enabling State Estimation for Fault Identification in Water Distribution Systems Under Large Disasters Mobile Cloud-of-Clouds Storage Made Efficient: A Network Coding Based Approach Collective Attestation: for a Stronger Security in Embedded Networks Impact of Man-In-The-Middle Attacks on Ethereum PubSub-SGX: Exploiting Trusted Execution Environments for Privacy-Preserving Publish/Subscribe Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1