非线性Lamb波时间反演疲劳裂纹检测的数值研究

Junzhen Wang, Yanfeng Shen
{"title":"非线性Lamb波时间反演疲劳裂纹检测的数值研究","authors":"Junzhen Wang, Yanfeng Shen","doi":"10.1115/imece2019-10881","DOIUrl":null,"url":null,"abstract":"\n This paper presents a numerical study on nonlinear Lamb wave time reversing for fatigue crack detection. An analytical framework is initially presented, modeling Lamb wave generation, propagation, wave crack linear and nonlinear interaction, and reception. Subsequently, a 3D transient dynamic coupled-field finite element model is constructed to simulate the pitch-catch procedure in an aluminum plate using the commercial finite element software (ANSYS). The excitation frequency is carefully selected, where only single Lamb wave mode will be generated by the Piezoelectric Wafer Active Sensor (PWAS). The fatigue cracks are modelled nucleating from both sides of a rivet hole. In addition, contact dynamics are considered to capture the nonlinear interactions between guided waves and the fatigue cracks, which would induce Contact Acoustic Nonlinearity (CAN) into the guided waves. Then the conventional and virtual time reversal methods are realized by finite element simulation. Advanced signal processing techniques are used to extract the distinctive nonlinear features. Via the Fast Fourier Transform (FFT) and time-frequency spectral analysis, nonlinear superharmonic components are observed. The reconstructed signals attained from the conventional and virtual time reversal methods are compared and analyzed. Finally, various Damage Indices (DIs), based on the difference between the reconstructed signal and the excitation waveform as well as the amplitude ratio between the superharmonic and the fundamental frequency components are adopted to evaluate the fatigue crack severity. The DIs could provide quantitative diagnostic information for fatigue crack detection. This paper finishes with summary, concluding remarks, and suggestions for future work.","PeriodicalId":375383,"journal":{"name":"Volume 9: Mechanics of Solids, Structures, and Fluids","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Numerical Investigation of Nonlinear Lamb Wave Time Reversing for Fatigue Crack Detection\",\"authors\":\"Junzhen Wang, Yanfeng Shen\",\"doi\":\"10.1115/imece2019-10881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper presents a numerical study on nonlinear Lamb wave time reversing for fatigue crack detection. An analytical framework is initially presented, modeling Lamb wave generation, propagation, wave crack linear and nonlinear interaction, and reception. Subsequently, a 3D transient dynamic coupled-field finite element model is constructed to simulate the pitch-catch procedure in an aluminum plate using the commercial finite element software (ANSYS). The excitation frequency is carefully selected, where only single Lamb wave mode will be generated by the Piezoelectric Wafer Active Sensor (PWAS). The fatigue cracks are modelled nucleating from both sides of a rivet hole. In addition, contact dynamics are considered to capture the nonlinear interactions between guided waves and the fatigue cracks, which would induce Contact Acoustic Nonlinearity (CAN) into the guided waves. Then the conventional and virtual time reversal methods are realized by finite element simulation. Advanced signal processing techniques are used to extract the distinctive nonlinear features. Via the Fast Fourier Transform (FFT) and time-frequency spectral analysis, nonlinear superharmonic components are observed. The reconstructed signals attained from the conventional and virtual time reversal methods are compared and analyzed. Finally, various Damage Indices (DIs), based on the difference between the reconstructed signal and the excitation waveform as well as the amplitude ratio between the superharmonic and the fundamental frequency components are adopted to evaluate the fatigue crack severity. The DIs could provide quantitative diagnostic information for fatigue crack detection. This paper finishes with summary, concluding remarks, and suggestions for future work.\",\"PeriodicalId\":375383,\"journal\":{\"name\":\"Volume 9: Mechanics of Solids, Structures, and Fluids\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 9: Mechanics of Solids, Structures, and Fluids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2019-10881\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: Mechanics of Solids, Structures, and Fluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2019-10881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文对非线性兰姆波时间反演疲劳裂纹检测方法进行了数值研究。初步提出了兰姆波产生、传播、波裂线性和非线性相互作用以及接收的分析框架。随后,利用商用有限元软件ANSYS建立了三维瞬态动力耦合场有限元模型,模拟了铝板的俯仰捕获过程。激励频率是精心选择的,其中只有单一的Lamb波模式将由压电片主动传感器(PWAS)产生。模拟了铆钉孔两侧的疲劳裂纹成核。此外,还考虑了接触动力学来捕捉导波与疲劳裂纹之间的非线性相互作用,这种非线性相互作用会导致接触声非线性(CAN)进入导波。然后通过有限元仿真实现了传统时间反演方法和虚拟时间反演方法。采用先进的信号处理技术提取出鲜明的非线性特征。通过快速傅里叶变换(FFT)和时频分析,观察到非线性超谐波成分。对传统时间反演方法和虚拟时间反演方法得到的重构信号进行了比较和分析。最后,根据重构信号与激励波形的差值以及超谐波分量与基频分量的幅值比,采用各种损伤指数(DIs)来评价疲劳裂纹的严重程度。该方法可为疲劳裂纹检测提供定量诊断信息。最后对全文进行了总结、结束语和对今后工作的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical Investigation of Nonlinear Lamb Wave Time Reversing for Fatigue Crack Detection
This paper presents a numerical study on nonlinear Lamb wave time reversing for fatigue crack detection. An analytical framework is initially presented, modeling Lamb wave generation, propagation, wave crack linear and nonlinear interaction, and reception. Subsequently, a 3D transient dynamic coupled-field finite element model is constructed to simulate the pitch-catch procedure in an aluminum plate using the commercial finite element software (ANSYS). The excitation frequency is carefully selected, where only single Lamb wave mode will be generated by the Piezoelectric Wafer Active Sensor (PWAS). The fatigue cracks are modelled nucleating from both sides of a rivet hole. In addition, contact dynamics are considered to capture the nonlinear interactions between guided waves and the fatigue cracks, which would induce Contact Acoustic Nonlinearity (CAN) into the guided waves. Then the conventional and virtual time reversal methods are realized by finite element simulation. Advanced signal processing techniques are used to extract the distinctive nonlinear features. Via the Fast Fourier Transform (FFT) and time-frequency spectral analysis, nonlinear superharmonic components are observed. The reconstructed signals attained from the conventional and virtual time reversal methods are compared and analyzed. Finally, various Damage Indices (DIs), based on the difference between the reconstructed signal and the excitation waveform as well as the amplitude ratio between the superharmonic and the fundamental frequency components are adopted to evaluate the fatigue crack severity. The DIs could provide quantitative diagnostic information for fatigue crack detection. This paper finishes with summary, concluding remarks, and suggestions for future work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Macro-Scale Geometric Voids to Alter Stress Wave Propagation in Solids Finite Element Analysis of the Effect of Porosity on the Plasticity and Damage Behavior of Mg AZ31 and Al 6061 T651 Alloys Effects of Drive Side Pressure Angle on Gear Fatigue Crack Propagation Life for Spur Gears With Symmetric and Asymmetric Teeth Guidelines and Limitations of the Compact Compression Specimen Modelling Stress Softening and Necking Phenomena in Double Network Hydrogels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1