S. Wender, M. Schoenherr, N. Kaempchen, K. Dietmayer
{"title":"基于自动参数优化的十字路口激光扫描仪测量分类","authors":"S. Wender, M. Schoenherr, N. Kaempchen, K. Dietmayer","doi":"10.1109/IVS.2005.1505084","DOIUrl":null,"url":null,"abstract":"Object classification at intersection scenarios is necessary in order to provide a general environment description. Objects are observed using a multilayer laserscanner. Significant features for object classification are identified and their extraction is described. Classification is performed using well-known techniques of statistical learning. Classification results of several neural networks are described and compared with classification performance of support vector machines.","PeriodicalId":386189,"journal":{"name":"IEEE Proceedings. Intelligent Vehicles Symposium, 2005.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Classification of laserscanner measurements at intersection scenarios with automatic parameter optimization\",\"authors\":\"S. Wender, M. Schoenherr, N. Kaempchen, K. Dietmayer\",\"doi\":\"10.1109/IVS.2005.1505084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Object classification at intersection scenarios is necessary in order to provide a general environment description. Objects are observed using a multilayer laserscanner. Significant features for object classification are identified and their extraction is described. Classification is performed using well-known techniques of statistical learning. Classification results of several neural networks are described and compared with classification performance of support vector machines.\",\"PeriodicalId\":386189,\"journal\":{\"name\":\"IEEE Proceedings. Intelligent Vehicles Symposium, 2005.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Proceedings. Intelligent Vehicles Symposium, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2005.1505084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Proceedings. Intelligent Vehicles Symposium, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2005.1505084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Classification of laserscanner measurements at intersection scenarios with automatic parameter optimization
Object classification at intersection scenarios is necessary in order to provide a general environment description. Objects are observed using a multilayer laserscanner. Significant features for object classification are identified and their extraction is described. Classification is performed using well-known techniques of statistical learning. Classification results of several neural networks are described and compared with classification performance of support vector machines.