细菌基因组压缩的动态马尔可夫模型

Rongjie Wang, Mingxiang Teng, Yang Bai, Tianyi Zang, Yadong Wang
{"title":"细菌基因组压缩的动态马尔可夫模型","authors":"Rongjie Wang, Mingxiang Teng, Yang Bai, Tianyi Zang, Yadong Wang","doi":"10.1109/BIBM.2016.7822621","DOIUrl":null,"url":null,"abstract":"Genome data increasing exponentially since the last decade, compressing genome with Markov models has been proposed as an effective statistical method. However, existing methods set a static order-k Markov models to compress various genomes. Employing static order-k Markov model could result in a sub-optimal orders on some genomes. In this paper, we propose a compression method that relies on a pre-analysis of the data before compression, with the aim of estimating Markov models order k, yielding improvements over static Markov models. Experimental results on the latest complete bacterial genome data show that our method could effectively compress genome with a better performance than the state-of-the-art method. The codes of DMcompress are available at https://rongjiewang.github.io/DMcompress","PeriodicalId":345384,"journal":{"name":"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"11 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"DMcompress: Dynamic Markov models for bacterial genome compression\",\"authors\":\"Rongjie Wang, Mingxiang Teng, Yang Bai, Tianyi Zang, Yadong Wang\",\"doi\":\"10.1109/BIBM.2016.7822621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Genome data increasing exponentially since the last decade, compressing genome with Markov models has been proposed as an effective statistical method. However, existing methods set a static order-k Markov models to compress various genomes. Employing static order-k Markov model could result in a sub-optimal orders on some genomes. In this paper, we propose a compression method that relies on a pre-analysis of the data before compression, with the aim of estimating Markov models order k, yielding improvements over static Markov models. Experimental results on the latest complete bacterial genome data show that our method could effectively compress genome with a better performance than the state-of-the-art method. The codes of DMcompress are available at https://rongjiewang.github.io/DMcompress\",\"PeriodicalId\":345384,\"journal\":{\"name\":\"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"volume\":\"11 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2016.7822621\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2016.7822621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

近十年来,基因组数据呈指数级增长,利用马尔可夫模型压缩基因组已被提出作为一种有效的统计方法。然而,现有的方法设置一个静态的k阶马尔可夫模型来压缩不同的基因组。采用静态k阶马尔可夫模型可能导致某些基因组的次优序。在本文中,我们提出了一种压缩方法,该方法依赖于压缩前对数据的预分析,目的是估计马尔可夫模型的k阶,从而优于静态马尔可夫模型。在最新的细菌全基因组数据上的实验结果表明,我们的方法可以有效地压缩基因组,并且具有比现有方法更好的性能。DMcompress的代码可在https://rongjiewang.github.io/DMcompress上获得
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DMcompress: Dynamic Markov models for bacterial genome compression
Genome data increasing exponentially since the last decade, compressing genome with Markov models has been proposed as an effective statistical method. However, existing methods set a static order-k Markov models to compress various genomes. Employing static order-k Markov model could result in a sub-optimal orders on some genomes. In this paper, we propose a compression method that relies on a pre-analysis of the data before compression, with the aim of estimating Markov models order k, yielding improvements over static Markov models. Experimental results on the latest complete bacterial genome data show that our method could effectively compress genome with a better performance than the state-of-the-art method. The codes of DMcompress are available at https://rongjiewang.github.io/DMcompress
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The role of high performance, grid and cloud computing in high-throughput sequencing A novel algorithm for identifying essential proteins by integrating subcellular localization CNNsite: Prediction of DNA-binding residues in proteins using Convolutional Neural Network with sequence features Inferring Social Influence of anti-Tobacco mass media campaigns Emotion recognition from multi-channel EEG data through Convolutional Recurrent Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1