生物医学植入物自偏置磁电层压板的无线电力传输

Orpita Saha, Erik Andersen, S. Roundy
{"title":"生物医学植入物自偏置磁电层压板的无线电力传输","authors":"Orpita Saha, Erik Andersen, S. Roundy","doi":"10.1109/PowerMEMS54003.2021.9658356","DOIUrl":null,"url":null,"abstract":"Magnetoelectric (ME) wireless power transfer (WPT) is becoming an important topic in the field of biomedical implants. Implantable ME WPT receivers have potential safety, size, and convenience advantages over alternative methods (i.e. inductive, far-field RF, and acoustic). However, for optimal performance, ME devices need some method to apply a DC bias magnetic field. To overcome the DC bias problem, this paper investigates self-biased ME laminates using the magnetization grading approach. We experimentally characterize the voltage and power performance of multi-layer self-biased ME laminates as a function of pre-magnetizing field. We demonstrate devices made of Metglas, Ni, and PZT of 0.05 cm3 in size that can generate ~250 μW from an applied 130 μT AC field with no DC field bias. This size, power, and AC magnetic field combination makes these laminates attractive for powering biomedical implants.","PeriodicalId":165158,"journal":{"name":"2021 IEEE 20th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Wireless Power Transfer by Self-biased Magnetoelectric Laminate for Biomedical Implants\",\"authors\":\"Orpita Saha, Erik Andersen, S. Roundy\",\"doi\":\"10.1109/PowerMEMS54003.2021.9658356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetoelectric (ME) wireless power transfer (WPT) is becoming an important topic in the field of biomedical implants. Implantable ME WPT receivers have potential safety, size, and convenience advantages over alternative methods (i.e. inductive, far-field RF, and acoustic). However, for optimal performance, ME devices need some method to apply a DC bias magnetic field. To overcome the DC bias problem, this paper investigates self-biased ME laminates using the magnetization grading approach. We experimentally characterize the voltage and power performance of multi-layer self-biased ME laminates as a function of pre-magnetizing field. We demonstrate devices made of Metglas, Ni, and PZT of 0.05 cm3 in size that can generate ~250 μW from an applied 130 μT AC field with no DC field bias. This size, power, and AC magnetic field combination makes these laminates attractive for powering biomedical implants.\",\"PeriodicalId\":165158,\"journal\":{\"name\":\"2021 IEEE 20th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 20th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PowerMEMS54003.2021.9658356\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 20th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PowerMEMS54003.2021.9658356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

磁电(ME)无线输电(WPT)是生物医学植入物领域的一个重要课题。植入式ME WPT接收器具有潜在的安全性、尺寸和便利性优势,优于其他方法(即感应、远场射频和声学)。然而,为了获得最佳性能,ME器件需要一些方法来施加直流偏置磁场。为了克服直流偏置问题,本文采用磁化分级方法研究了自偏置ME层合板。我们通过实验表征了多层自偏置ME层合板的电压和功率性能随预磁化场的变化。我们演示了尺寸为0.05 cm3的metglass, Ni和PZT制成的器件,在施加130 μT的交流电场中产生~250 μW,无直流场偏置。这种尺寸,功率和交流磁场组合使这些层压板具有吸引力,可为生物医学植入物供电。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Wireless Power Transfer by Self-biased Magnetoelectric Laminate for Biomedical Implants
Magnetoelectric (ME) wireless power transfer (WPT) is becoming an important topic in the field of biomedical implants. Implantable ME WPT receivers have potential safety, size, and convenience advantages over alternative methods (i.e. inductive, far-field RF, and acoustic). However, for optimal performance, ME devices need some method to apply a DC bias magnetic field. To overcome the DC bias problem, this paper investigates self-biased ME laminates using the magnetization grading approach. We experimentally characterize the voltage and power performance of multi-layer self-biased ME laminates as a function of pre-magnetizing field. We demonstrate devices made of Metglas, Ni, and PZT of 0.05 cm3 in size that can generate ~250 μW from an applied 130 μT AC field with no DC field bias. This size, power, and AC magnetic field combination makes these laminates attractive for powering biomedical implants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation of self-oscillation piezoelectric energy harvesting mechanics for lower-limb motion Application of Two Degree-of-Freedom Vibrational Energy Harvesting Theory to Real Environmental Vibration Power and Bandwidth Enhancement through Asymmetric Bi-stable Design for Piezoelectric Energy Harvesters A new approach for obtaining PDMS ferroelectrets with random voids Secondary Impact bandwidth effects using Embedded Vertical Moving Mass Energy Harvester
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1