用于特征分类的体积图像表面参数化

Richard W. I. Yarger, Francis K. H. Quek
{"title":"用于特征分类的体积图像表面参数化","authors":"Richard W. I. Yarger, Francis K. H. Quek","doi":"10.1109/BIBE.2000.889621","DOIUrl":null,"url":null,"abstract":"Curvature-based surface features are well suited for use in multimodal medical image registration. The accuracy of such feature-based registration techniques is dependent upon the reliability of the feature computation. The computation of curvature features requires second derivative information that is best obtained from a parametric surface representation. The authors present a method of explicitly parametrizing surfaces from volumetric data. Surfaces are extracted, without a global thresholding, using active contour models. A monge basis for each surface patch is estimated and used to transform the patch into local, or parametric, coordinates. Surface patches are fit to a bicubic polynomial in local coordinates using least squares solved by singular value decomposition. The authors tested their method by reconstructing surfaces from the surface model and analytically computing gaussian and mean curvatures. The model was tested on analytical and medical data.","PeriodicalId":196846,"journal":{"name":"Proceedings IEEE International Symposium on Bio-Informatics and Biomedical Engineering","volume":"28 19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Surface parameterization in volumetric images for feature classification\",\"authors\":\"Richard W. I. Yarger, Francis K. H. Quek\",\"doi\":\"10.1109/BIBE.2000.889621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Curvature-based surface features are well suited for use in multimodal medical image registration. The accuracy of such feature-based registration techniques is dependent upon the reliability of the feature computation. The computation of curvature features requires second derivative information that is best obtained from a parametric surface representation. The authors present a method of explicitly parametrizing surfaces from volumetric data. Surfaces are extracted, without a global thresholding, using active contour models. A monge basis for each surface patch is estimated and used to transform the patch into local, or parametric, coordinates. Surface patches are fit to a bicubic polynomial in local coordinates using least squares solved by singular value decomposition. The authors tested their method by reconstructing surfaces from the surface model and analytically computing gaussian and mean curvatures. The model was tested on analytical and medical data.\",\"PeriodicalId\":196846,\"journal\":{\"name\":\"Proceedings IEEE International Symposium on Bio-Informatics and Biomedical Engineering\",\"volume\":\"28 19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings IEEE International Symposium on Bio-Informatics and Biomedical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBE.2000.889621\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE International Symposium on Bio-Informatics and Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2000.889621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

基于曲率的表面特征非常适合用于多模态医学图像配准。这种基于特征的配准技术的准确性取决于特征计算的可靠性。曲率特征的计算需要二阶导数信息,这种信息最好从参数曲面表示中获得。作者提出了一种从体积数据中显式参数化曲面的方法。曲面的提取,没有全局阈值,使用活动轮廓模型。估计每个表面patch的monge基,并用于将patch转换为局部或参数坐标。利用奇异值分解法求解最小二乘,在局部坐标下拟合表面斑块的双三次多项式。作者通过从曲面模型重建曲面并解析计算高斯曲率和平均曲率来验证他们的方法。该模型在分析数据和医学数据上进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Surface parameterization in volumetric images for feature classification
Curvature-based surface features are well suited for use in multimodal medical image registration. The accuracy of such feature-based registration techniques is dependent upon the reliability of the feature computation. The computation of curvature features requires second derivative information that is best obtained from a parametric surface representation. The authors present a method of explicitly parametrizing surfaces from volumetric data. Surfaces are extracted, without a global thresholding, using active contour models. A monge basis for each surface patch is estimated and used to transform the patch into local, or parametric, coordinates. Surface patches are fit to a bicubic polynomial in local coordinates using least squares solved by singular value decomposition. The authors tested their method by reconstructing surfaces from the surface model and analytically computing gaussian and mean curvatures. The model was tested on analytical and medical data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classification and estimation of ultrasound speckle noise with neural networks A digital retina-like low level vision processor Achieving interoperability of genome databases through intelligent Web mediators Reconstructing specimens using DIC microscope images Gene mapping by haplotype pattern mining
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1