信用评分的稀疏最大边际Logistic回归

Sabyasachi Patra, K. Shanker, D. Kundu
{"title":"信用评分的稀疏最大边际Logistic回归","authors":"Sabyasachi Patra, K. Shanker, D. Kundu","doi":"10.1109/ICDM.2008.84","DOIUrl":null,"url":null,"abstract":"The objective of credit scoring model is to categorize the applicants as either accepted or rejected debtors prior to granting credit. A modified logistic loss function is proposed which can approximate hinge loss and therefore the resulting model, maximum margin logistic regression (MMLR), has the classification capability of support vector machine (SVM) with low computational cost. Finally, to classify credit applicants, an efficient algorithm is also described for MMLR based on epsilon-boosting which can provide sparse estimation of coefficients for better stability and interpretability.","PeriodicalId":252958,"journal":{"name":"2008 Eighth IEEE International Conference on Data Mining","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Sparse Maximum Margin Logistic Regression for Credit Scoring\",\"authors\":\"Sabyasachi Patra, K. Shanker, D. Kundu\",\"doi\":\"10.1109/ICDM.2008.84\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of credit scoring model is to categorize the applicants as either accepted or rejected debtors prior to granting credit. A modified logistic loss function is proposed which can approximate hinge loss and therefore the resulting model, maximum margin logistic regression (MMLR), has the classification capability of support vector machine (SVM) with low computational cost. Finally, to classify credit applicants, an efficient algorithm is also described for MMLR based on epsilon-boosting which can provide sparse estimation of coefficients for better stability and interpretability.\",\"PeriodicalId\":252958,\"journal\":{\"name\":\"2008 Eighth IEEE International Conference on Data Mining\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Eighth IEEE International Conference on Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2008.84\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Eighth IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2008.84","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

信用评分模型的目标是在授予信用之前将申请人分类为接受或拒绝的债务人。提出了一种近似于铰链损失的修正逻辑损失函数,使所得到的最大边际逻辑回归模型具有支持向量机(SVM)的分类能力,且计算成本低。最后,为了对信用申请人进行分类,本文还描述了一种基于epsilon-boosting的MMLR算法,该算法可以提供稀疏的系数估计,以获得更好的稳定性和可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sparse Maximum Margin Logistic Regression for Credit Scoring
The objective of credit scoring model is to categorize the applicants as either accepted or rejected debtors prior to granting credit. A modified logistic loss function is proposed which can approximate hinge loss and therefore the resulting model, maximum margin logistic regression (MMLR), has the classification capability of support vector machine (SVM) with low computational cost. Finally, to classify credit applicants, an efficient algorithm is also described for MMLR based on epsilon-boosting which can provide sparse estimation of coefficients for better stability and interpretability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SeqStream: Mining Closed Sequential Patterns over Stream Sliding Windows Support Vector Regression for Censored Data (SVRc): A Novel Tool for Survival Analysis A Probability Model for Projective Clustering on High Dimensional Data Text Cube: Computing IR Measures for Multidimensional Text Database Analysis A Hierarchical Algorithm for Clustering Uncertain Data via an Information-Theoretic Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1