A. Maksimchuk, V. Bychenkov, K. Flippo, H. Krause, K. Mima, G. Mourou, K. Nemoto, Y. Sentoku, D. Umstadter, R. Vane
{"title":"高能离子产生","authors":"A. Maksimchuk, V. Bychenkov, K. Flippo, H. Krause, K. Mima, G. Mourou, K. Nemoto, Y. Sentoku, D. Umstadter, R. Vane","doi":"10.1117/12.536776","DOIUrl":null,"url":null,"abstract":"We report on multi-MeV ion beam generation from the interaction of a 10 TW, 400 fs, 1.053 μm laser focused onto thin foil targets at intensities ranging from 1017 to 1019 W/cm2. Ion beam characteristics were studied by changing laser intensity, the preformed plasma scale-length and target material initial conductivity. We manipulated the proton beam divergence by using shaped targets. We observed nuclear transformation induced by high-energy protons and deuterons. A fully relativistic two-dimensional particle-in-cell simulation modeled energetic ion generation. These simulations identify the mechanism for the hot electron generation at the laser-plasma interface. Comparison with experiments sheds light on the dependence of ion-energy on preplasma scale length and solid density plasma thickness as well as relates ion energies for multi-species plasma.","PeriodicalId":340981,"journal":{"name":"European Conference on Laser Interaction with Matter","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-energy ion generation\",\"authors\":\"A. Maksimchuk, V. Bychenkov, K. Flippo, H. Krause, K. Mima, G. Mourou, K. Nemoto, Y. Sentoku, D. Umstadter, R. Vane\",\"doi\":\"10.1117/12.536776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report on multi-MeV ion beam generation from the interaction of a 10 TW, 400 fs, 1.053 μm laser focused onto thin foil targets at intensities ranging from 1017 to 1019 W/cm2. Ion beam characteristics were studied by changing laser intensity, the preformed plasma scale-length and target material initial conductivity. We manipulated the proton beam divergence by using shaped targets. We observed nuclear transformation induced by high-energy protons and deuterons. A fully relativistic two-dimensional particle-in-cell simulation modeled energetic ion generation. These simulations identify the mechanism for the hot electron generation at the laser-plasma interface. Comparison with experiments sheds light on the dependence of ion-energy on preplasma scale length and solid density plasma thickness as well as relates ion energies for multi-species plasma.\",\"PeriodicalId\":340981,\"journal\":{\"name\":\"European Conference on Laser Interaction with Matter\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Conference on Laser Interaction with Matter\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.536776\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Conference on Laser Interaction with Matter","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.536776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We report on multi-MeV ion beam generation from the interaction of a 10 TW, 400 fs, 1.053 μm laser focused onto thin foil targets at intensities ranging from 1017 to 1019 W/cm2. Ion beam characteristics were studied by changing laser intensity, the preformed plasma scale-length and target material initial conductivity. We manipulated the proton beam divergence by using shaped targets. We observed nuclear transformation induced by high-energy protons and deuterons. A fully relativistic two-dimensional particle-in-cell simulation modeled energetic ion generation. These simulations identify the mechanism for the hot electron generation at the laser-plasma interface. Comparison with experiments sheds light on the dependence of ion-energy on preplasma scale length and solid density plasma thickness as well as relates ion energies for multi-species plasma.