Jin-yong Choi, E. Nam, Yoon-Jae Seong, Jinhyuk Yoon, Sookwan Lee, Hongseok Kim, Jeongsu Park, Yeong-Jae Woo, Sheayun Lee, S. Min
{"title":"HIL","authors":"Jin-yong Choi, E. Nam, Yoon-Jae Seong, Jinhyuk Yoon, Sookwan Lee, Hongseok Kim, Jeongsu Park, Yeong-Jae Woo, Sheayun Lee, S. Min","doi":"10.1145/3281030","DOIUrl":null,"url":null,"abstract":"We present a framework called Hierarchically Interacting Logs (HIL) for constructing Flash Translation Layers (FTLs). The main goal of the HIL framework is to heal the Achilles heel —the crash recovery—of FTLs (hence, its name). Nonetheless, the framework itself is general enough to encompass not only block-mapped and page-mapped FTLs but also many of their variants, including hybrid ones, because of its compositional nature. Crash recovery within the HIL framework proceeds in two phases: structural recovery and functional recovery. During the structural recovery, residual effects due to program operations ongoing at the time of the crash are eliminated in an atomic manner using shadow paging. During the functional recovery, operations that would have been performed if there had been no crash are replayed in a redo-only fashion. Both phases operate in an idempotent manner, preventing repeated crashes during recovery from causing any additional problems. We demonstrate the practicality of the proposed HIL framework by implementing a prototype and showing that its performance during normal execution and also during crash recovery is at least as good as those of state-of-the-art SSDs.","PeriodicalId":273014,"journal":{"name":"ACM Transactions on Storage (TOS)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Storage (TOS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3281030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一个名为层次交互日志(HIL)的框架,用于构建Flash翻译层(ftl)。HIL框架的主要目标是治愈超光速飞行的致命弱点——崩溃恢复(因此得名)。尽管如此,这个框架本身是足够通用的,不仅可以包含块映射和页面映射的ftl,还可以包含它们的许多变体,包括混合的,因为它的组成性质。HIL框架内的崩溃恢复分两个阶段进行:结构恢复和功能恢复。在结构恢复期间,由于在崩溃时正在进行的程序操作而产生的残余影响将使用影子分页以原子的方式消除。在功能恢复期间,将以仅重做的方式重播在没有崩溃的情况下执行的操作。这两个阶段都以幂等的方式运行,防止在恢复过程中重复崩溃导致任何其他问题。我们通过实现一个原型来证明所提出的HIL框架的实用性,并表明其在正常执行和崩溃恢复期间的性能至少与最先进的ssd一样好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HIL
We present a framework called Hierarchically Interacting Logs (HIL) for constructing Flash Translation Layers (FTLs). The main goal of the HIL framework is to heal the Achilles heel —the crash recovery—of FTLs (hence, its name). Nonetheless, the framework itself is general enough to encompass not only block-mapped and page-mapped FTLs but also many of their variants, including hybrid ones, because of its compositional nature. Crash recovery within the HIL framework proceeds in two phases: structural recovery and functional recovery. During the structural recovery, residual effects due to program operations ongoing at the time of the crash are eliminated in an atomic manner using shadow paging. During the functional recovery, operations that would have been performed if there had been no crash are replayed in a redo-only fashion. Both phases operate in an idempotent manner, preventing repeated crashes during recovery from causing any additional problems. We demonstrate the practicality of the proposed HIL framework by implementing a prototype and showing that its performance during normal execution and also during crash recovery is at least as good as those of state-of-the-art SSDs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
WebAssembly-based Delta Sync for Cloud Storage Services DEFUSE: An Interface for Fast and Correct User Space File System Access Donag: Generating Efficient Patches and Diffs for Compressed Archives Building GC-free Key-value Store on HM-SMR Drives with ZoneFS Kangaroo: Theory and Practice of Caching Billions of Tiny Objects on Flash
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1