基于轨迹的可靠移动人群传感系统任务分配

Petar Mrazovic, M. Matskin, Nima Dokoohaki
{"title":"基于轨迹的可靠移动人群传感系统任务分配","authors":"Petar Mrazovic, M. Matskin, Nima Dokoohaki","doi":"10.1109/ICDMW.2015.90","DOIUrl":null,"url":null,"abstract":"Mobile crowd sensing (MCS) is as a promising people-centric sensing paradigm which allows ordinary citizens to contribute sensing data using mobile communication devices. In this paper we study correlation between users' mobility and their role as contributors in MCS applications. We propose a new trajectory-based approach for task allocation in MCS environments and model participants' spatio-temporal competences by analyzing their mobile traces. By allocating MCS tasks only to participant who are familiar with the target location we significantly increase the reliability of contributed data and reduce total communication cost. We introduce novel metric to estimate participants' competence to conduct MCS tasks and propose fair ranking approach allowing newcomers to compete with experienced senior contributors. Additionally, we group similar expert contributors and thus open up new possibilities for physical collaboration between them. We evaluate our work using GeoLife trajectory dataset and the experimental results show the advantages of our approach.","PeriodicalId":192888,"journal":{"name":"2015 IEEE International Conference on Data Mining Workshop (ICDMW)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Trajectory-Based Task Allocation for Reliable Mobile Crowd Sensing Systems\",\"authors\":\"Petar Mrazovic, M. Matskin, Nima Dokoohaki\",\"doi\":\"10.1109/ICDMW.2015.90\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mobile crowd sensing (MCS) is as a promising people-centric sensing paradigm which allows ordinary citizens to contribute sensing data using mobile communication devices. In this paper we study correlation between users' mobility and their role as contributors in MCS applications. We propose a new trajectory-based approach for task allocation in MCS environments and model participants' spatio-temporal competences by analyzing their mobile traces. By allocating MCS tasks only to participant who are familiar with the target location we significantly increase the reliability of contributed data and reduce total communication cost. We introduce novel metric to estimate participants' competence to conduct MCS tasks and propose fair ranking approach allowing newcomers to compete with experienced senior contributors. Additionally, we group similar expert contributors and thus open up new possibilities for physical collaboration between them. We evaluate our work using GeoLife trajectory dataset and the experimental results show the advantages of our approach.\",\"PeriodicalId\":192888,\"journal\":{\"name\":\"2015 IEEE International Conference on Data Mining Workshop (ICDMW)\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Data Mining Workshop (ICDMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2015.90\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Data Mining Workshop (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2015.90","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

移动人群传感(MCS)是一种有前途的以人为中心的传感范式,它允许普通公民使用移动通信设备贡献传感数据。本文研究了MCS应用中用户移动性与用户角色之间的关系。我们提出了一种新的基于轨迹的MCS任务分配方法,并通过分析参与者的移动轨迹来模拟参与者的时空能力。通过将MCS任务只分配给熟悉目标位置的参与者,我们大大提高了所提供数据的可靠性并降低了总通信成本。我们引入了新的指标来评估参与者执行MCS任务的能力,并提出了公平的排名方法,允许新人与经验丰富的资深贡献者竞争。此外,我们将相似的专家贡献者分组,从而为他们之间的物理协作开辟了新的可能性。我们使用GeoLife轨迹数据集对我们的工作进行了评估,实验结果表明了我们的方法的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Trajectory-Based Task Allocation for Reliable Mobile Crowd Sensing Systems
Mobile crowd sensing (MCS) is as a promising people-centric sensing paradigm which allows ordinary citizens to contribute sensing data using mobile communication devices. In this paper we study correlation between users' mobility and their role as contributors in MCS applications. We propose a new trajectory-based approach for task allocation in MCS environments and model participants' spatio-temporal competences by analyzing their mobile traces. By allocating MCS tasks only to participant who are familiar with the target location we significantly increase the reliability of contributed data and reduce total communication cost. We introduce novel metric to estimate participants' competence to conduct MCS tasks and propose fair ranking approach allowing newcomers to compete with experienced senior contributors. Additionally, we group similar expert contributors and thus open up new possibilities for physical collaboration between them. We evaluate our work using GeoLife trajectory dataset and the experimental results show the advantages of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Large-Scale Linear Support Vector Ordinal Regression Solver Joint Recovery and Representation Learning for Robust Correlation Estimation Based on Partially Observed Data Accurate Classification of Biological Data Using Ensembles Large-Scale Unusual Time Series Detection Sentiment Polarity Classification Using Structural Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1