使用源代码和测试套件度量预测突变分数

Kevin Jalbert, J. S. Bradbury
{"title":"使用源代码和测试套件度量预测突变分数","authors":"Kevin Jalbert, J. S. Bradbury","doi":"10.1109/RAISE.2012.6227969","DOIUrl":null,"url":null,"abstract":"Mutation testing has traditionally been used to evaluate the effectiveness of test suites and provide confidence in the testing process. Mutation testing involves the creation of many versions of a program each with a single syntactic fault. A test suite is evaluated against these program versions (mutants) in order to determine the percentage of mutants a test suite is able to identify (mutation score). A major drawback of mutation testing is that even a small program may yield thousands of mutants and can potentially make the process cost prohibitive. To improve the performance and reduce the cost of mutation testing, we propose a machine learning approach to predict mutation score based on a combination of source code and test suite metrics.","PeriodicalId":114731,"journal":{"name":"2012 First International Workshop on Realizing AI Synergies in Software Engineering (RAISE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Predicting mutation score using source code and test suite metrics\",\"authors\":\"Kevin Jalbert, J. S. Bradbury\",\"doi\":\"10.1109/RAISE.2012.6227969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mutation testing has traditionally been used to evaluate the effectiveness of test suites and provide confidence in the testing process. Mutation testing involves the creation of many versions of a program each with a single syntactic fault. A test suite is evaluated against these program versions (mutants) in order to determine the percentage of mutants a test suite is able to identify (mutation score). A major drawback of mutation testing is that even a small program may yield thousands of mutants and can potentially make the process cost prohibitive. To improve the performance and reduce the cost of mutation testing, we propose a machine learning approach to predict mutation score based on a combination of source code and test suite metrics.\",\"PeriodicalId\":114731,\"journal\":{\"name\":\"2012 First International Workshop on Realizing AI Synergies in Software Engineering (RAISE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 First International Workshop on Realizing AI Synergies in Software Engineering (RAISE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RAISE.2012.6227969\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 First International Workshop on Realizing AI Synergies in Software Engineering (RAISE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAISE.2012.6227969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

传统上,突变测试被用于评估测试套件的有效性,并在测试过程中提供信心。突变测试包括创建一个程序的多个版本,每个版本都有一个语法错误。测试套件根据这些程序版本(突变)进行评估,以确定测试套件能够识别的突变的百分比(突变分数)。突变测试的一个主要缺点是,即使是一个小程序也可能产生数千个突变,并且可能使过程成本过高。为了提高突变测试的性能并降低成本,我们提出了一种基于源代码和测试套件指标组合的机器学习方法来预测突变分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting mutation score using source code and test suite metrics
Mutation testing has traditionally been used to evaluate the effectiveness of test suites and provide confidence in the testing process. Mutation testing involves the creation of many versions of a program each with a single syntactic fault. A test suite is evaluated against these program versions (mutants) in order to determine the percentage of mutants a test suite is able to identify (mutation score). A major drawback of mutation testing is that even a small program may yield thousands of mutants and can potentially make the process cost prohibitive. To improve the performance and reduce the cost of mutation testing, we propose a machine learning approach to predict mutation score based on a combination of source code and test suite metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synchronizing domain models with natural language specifications The role of Artificial Intelligence in Software Engineering On software engineering repositories and their open problems Context-based search to overcome learning barriers in software development Clone detection meets Semantic Web-based transitive closure computation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1