基于物联网的电动汽车电池监控系统

M. Surendar, P. Pradeepa
{"title":"基于物联网的电动汽车电池监控系统","authors":"M. Surendar, P. Pradeepa","doi":"10.1109/I-SMAC52330.2021.9640928","DOIUrl":null,"url":null,"abstract":"Battery surveillance is critical for the majority of battery-powered vehicles, for the benefit of the lead-acid battery's safety , functioning, and even to extend its life. Due to the development of EVs and HEVs, battery technology has made tremendous progress in recent years. However, the estimate of the state of charge (SOC) remains a battery engineering challenge. The remaining load ratio to the maximum load battery capacity is defined as the SOC. In terms of battery safety and maintenance, the SOC estimate is of prime importance. Artificial intelligence, notably machine learning-based systems, has recently been used to estimate battery state, both as part of adaptive systems and as stand-alone systems. The use of data-driven algorithms to estimate battery conditions with high precision is a potential approach. The purpose of this study is to offer a novel and highly accurate approach for predicting the state of charge (SOC) of a Li-ion battery cell that requires little conceptualization and modeling work. The battery aging process can be slowed down by properly treating the battery, including restricting frequent charge and deep drain cycles. This study presents an analysis based on IoT with an ultimate wireless battery surveillance system (WBSS) to determine the relationship between journey distance and discharge cycle. The proposed system's methodology has been tested and found to be effective.","PeriodicalId":178783,"journal":{"name":"2021 Fifth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An IOT-based Battery Surveillance System For E-Vehicles\",\"authors\":\"M. Surendar, P. Pradeepa\",\"doi\":\"10.1109/I-SMAC52330.2021.9640928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Battery surveillance is critical for the majority of battery-powered vehicles, for the benefit of the lead-acid battery's safety , functioning, and even to extend its life. Due to the development of EVs and HEVs, battery technology has made tremendous progress in recent years. However, the estimate of the state of charge (SOC) remains a battery engineering challenge. The remaining load ratio to the maximum load battery capacity is defined as the SOC. In terms of battery safety and maintenance, the SOC estimate is of prime importance. Artificial intelligence, notably machine learning-based systems, has recently been used to estimate battery state, both as part of adaptive systems and as stand-alone systems. The use of data-driven algorithms to estimate battery conditions with high precision is a potential approach. The purpose of this study is to offer a novel and highly accurate approach for predicting the state of charge (SOC) of a Li-ion battery cell that requires little conceptualization and modeling work. The battery aging process can be slowed down by properly treating the battery, including restricting frequent charge and deep drain cycles. This study presents an analysis based on IoT with an ultimate wireless battery surveillance system (WBSS) to determine the relationship between journey distance and discharge cycle. The proposed system's methodology has been tested and found to be effective.\",\"PeriodicalId\":178783,\"journal\":{\"name\":\"2021 Fifth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Fifth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/I-SMAC52330.2021.9640928\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Fifth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I-SMAC52330.2021.9640928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

对于大多数电池驱动的车辆来说,电池监控至关重要,这有利于铅酸电池的安全性、功能,甚至延长其使用寿命。由于电动汽车和混合动力汽车的发展,近年来电池技术取得了巨大的进步。然而,充电状态(SOC)的估计仍然是电池工程的一个挑战。剩余负载与最大负载电池容量的比率被定义为SOC。在电池安全和维护方面,SOC评估是至关重要的。人工智能,特别是基于机器学习的系统,最近被用于估计电池状态,既可以作为自适应系统的一部分,也可以作为独立系统。使用数据驱动算法来高精度估计电池状况是一种潜在的方法。本研究的目的是提供一种新的、高度准确的方法来预测锂离子电池的充电状态(SOC),这需要很少的概念化和建模工作。通过适当处理电池,包括限制频繁充电和深漏循环,可以减缓电池的老化过程。本研究提出了基于物联网的终极无线电池监控系统(WBSS)分析,以确定行程距离和放电周期之间的关系。拟议的系统的方法已经过测试,发现是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An IOT-based Battery Surveillance System For E-Vehicles
Battery surveillance is critical for the majority of battery-powered vehicles, for the benefit of the lead-acid battery's safety , functioning, and even to extend its life. Due to the development of EVs and HEVs, battery technology has made tremendous progress in recent years. However, the estimate of the state of charge (SOC) remains a battery engineering challenge. The remaining load ratio to the maximum load battery capacity is defined as the SOC. In terms of battery safety and maintenance, the SOC estimate is of prime importance. Artificial intelligence, notably machine learning-based systems, has recently been used to estimate battery state, both as part of adaptive systems and as stand-alone systems. The use of data-driven algorithms to estimate battery conditions with high precision is a potential approach. The purpose of this study is to offer a novel and highly accurate approach for predicting the state of charge (SOC) of a Li-ion battery cell that requires little conceptualization and modeling work. The battery aging process can be slowed down by properly treating the battery, including restricting frequent charge and deep drain cycles. This study presents an analysis based on IoT with an ultimate wireless battery surveillance system (WBSS) to determine the relationship between journey distance and discharge cycle. The proposed system's methodology has been tested and found to be effective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on the Modeling of Fast Face Recognition Against Age Disturbance under Deep Learning Design of IoT Network using Deep Learning-based Model for Anomaly Detection Analysis of the Impact of Blockchain and Net Technology on the Financial Governance of Internet Enterprises Affective Music Player for Multiple Emotion Recognition Using Facial Expressions with SVM A Deep Learning technology based covid-19 prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1