水文建模数据驱动方法的评价:以怡陶碧谷河流域为例

T. Li, Z. Li
{"title":"水文建模数据驱动方法的评价:以怡陶碧谷河流域为例","authors":"T. Li, Z. Li","doi":"10.3808/jeil.202300106","DOIUrl":null,"url":null,"abstract":"In the past two decades, data-driven modeling has become a popular approach for different modeling tasks. This paper presents an evaluation of the performance of five widely used data-driven approaches (i.e., generalized linear model, lasso regression, support vector machine, neural networks, and random forest) for the modeling of the Etobicoke Creek watershed in Ontario, Canada. The models are built with eleven years of meteorological and hydrometric data from local stations, and the performance is examined by the Nash-Sutcliffe efficiency coefficient, coefficient of determination, mean absolute percentage error, and root mean squared error. The results show all the models are able to generate acceptable predictions and random forest has the highest accuracy. This study can provide support for the selection of hydrological modeling approaches in future studies.","PeriodicalId":143718,"journal":{"name":"Journal of Environmental Informatics Letters","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of Data-Driven Methods for Hydrological Modeling: A Case Study of the Etobicoke Creek Watershed\",\"authors\":\"T. Li, Z. Li\",\"doi\":\"10.3808/jeil.202300106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the past two decades, data-driven modeling has become a popular approach for different modeling tasks. This paper presents an evaluation of the performance of five widely used data-driven approaches (i.e., generalized linear model, lasso regression, support vector machine, neural networks, and random forest) for the modeling of the Etobicoke Creek watershed in Ontario, Canada. The models are built with eleven years of meteorological and hydrometric data from local stations, and the performance is examined by the Nash-Sutcliffe efficiency coefficient, coefficient of determination, mean absolute percentage error, and root mean squared error. The results show all the models are able to generate acceptable predictions and random forest has the highest accuracy. This study can provide support for the selection of hydrological modeling approaches in future studies.\",\"PeriodicalId\":143718,\"journal\":{\"name\":\"Journal of Environmental Informatics Letters\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Informatics Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3808/jeil.202300106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Informatics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3808/jeil.202300106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在过去的二十年中,数据驱动建模已经成为不同建模任务的流行方法。本文介绍了五种广泛使用的数据驱动方法(即广义线性模型、lasso回归、支持向量机、神经网络和随机森林)在加拿大安大略省怡陶碧谷河流域建模中的性能评估。利用11年的气象站气象水文资料建立模型,并采用Nash-Sutcliffe效率系数、决定系数、平均绝对百分比误差和均方根误差对模型的性能进行了检验。结果表明,所有模型都能产生可接受的预测结果,其中随机森林的预测精度最高。本研究可为今后水文建模方法的选择提供支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation of Data-Driven Methods for Hydrological Modeling: A Case Study of the Etobicoke Creek Watershed
In the past two decades, data-driven modeling has become a popular approach for different modeling tasks. This paper presents an evaluation of the performance of five widely used data-driven approaches (i.e., generalized linear model, lasso regression, support vector machine, neural networks, and random forest) for the modeling of the Etobicoke Creek watershed in Ontario, Canada. The models are built with eleven years of meteorological and hydrometric data from local stations, and the performance is examined by the Nash-Sutcliffe efficiency coefficient, coefficient of determination, mean absolute percentage error, and root mean squared error. The results show all the models are able to generate acceptable predictions and random forest has the highest accuracy. This study can provide support for the selection of hydrological modeling approaches in future studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Extending Simulation Decomposition Analysis into Systemic Risk Planning for Domino-Like Cascading Effects in Environmental Systems Tracing Energy Conservation and Emission Reduction in China’s Transportation Sector Extreme Summer Precipitation Events in China and Their Changes during 1982 ~ 2019 Characteristics of Seasonal Frozen Soil in Hetao Irrigation District under Climate Change Distribution Characteristics of Soil Moisture in the Three Rivers Headwaters Region, China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1