玻璃化氧化铝砂轮的激光修整

M. Jackson, G. Robinson, N. Dahotre, A. Khangar, R. Moss
{"title":"玻璃化氧化铝砂轮的激光修整","authors":"M. Jackson, G. Robinson, N. Dahotre, A. Khangar, R. Moss","doi":"10.1179/096797803225009346","DOIUrl":null,"url":null,"abstract":"Abstract Grinding is a manufacturing process that produces engineering components to a desired surface finish. In continuous grinding operations, the grinding efficiency of vitrified grinding wheels deteriorates as the sharp cutting edges become blunt as a result of the formation of wear flats. Dressing is essentially a sharpening operation which addresses this problem by generating a specific topography on the cutting face of the grinding wheel. High power lasers are being explored as a non-contact dressing technique. In the present study, a high power laser was used to produce a resolidified layer on the surface of vitrified aluminium grinding wheels. The high heat flux intensity produced both solid-solid and solid-liquid phase transformations. Microstructural analysis of the dressed wheel surface showed extensive grain refinement. Microcutting edges are produced on the individual grinding grains. Though a wide grain size distribution was observed, grain shape was more regular (equiaxed), with well defined vertices and edges on each grain. The vertices and edges provide cutting edges for improved grinding at the microscale. Area analysis of surfaces using energy dispersive area analysis (EDAX) revealed the presence of Al, Cr, O, Si, K, and Na. However, X-ray diffractometry on the surface indicated the presence of Al2O3 phase only. The upper resolidified layer contained Si, Na, K, and P, whereas the material below was primarily Al, Cr, and O. This suggests that a glassy phase (with Al, O, Na, K, P, and Si) is formed on the surface. Subsequent laser treatment modified the morphological structure of the vitrified grinding wheel surface, thus creating a dressing effect with locally sculpted microscale cutting edges on each grinding grain. The experimental results indicate that laser modified grinding wheels are comparable in performance to diamond dressed grinding wheels.","PeriodicalId":350675,"journal":{"name":"British Ceramic Transactions","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"Laser dressing of vitrified aluminium oxide grinding wheels\",\"authors\":\"M. Jackson, G. Robinson, N. Dahotre, A. Khangar, R. Moss\",\"doi\":\"10.1179/096797803225009346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Grinding is a manufacturing process that produces engineering components to a desired surface finish. In continuous grinding operations, the grinding efficiency of vitrified grinding wheels deteriorates as the sharp cutting edges become blunt as a result of the formation of wear flats. Dressing is essentially a sharpening operation which addresses this problem by generating a specific topography on the cutting face of the grinding wheel. High power lasers are being explored as a non-contact dressing technique. In the present study, a high power laser was used to produce a resolidified layer on the surface of vitrified aluminium grinding wheels. The high heat flux intensity produced both solid-solid and solid-liquid phase transformations. Microstructural analysis of the dressed wheel surface showed extensive grain refinement. Microcutting edges are produced on the individual grinding grains. Though a wide grain size distribution was observed, grain shape was more regular (equiaxed), with well defined vertices and edges on each grain. The vertices and edges provide cutting edges for improved grinding at the microscale. Area analysis of surfaces using energy dispersive area analysis (EDAX) revealed the presence of Al, Cr, O, Si, K, and Na. However, X-ray diffractometry on the surface indicated the presence of Al2O3 phase only. The upper resolidified layer contained Si, Na, K, and P, whereas the material below was primarily Al, Cr, and O. This suggests that a glassy phase (with Al, O, Na, K, P, and Si) is formed on the surface. Subsequent laser treatment modified the morphological structure of the vitrified grinding wheel surface, thus creating a dressing effect with locally sculpted microscale cutting edges on each grinding grain. The experimental results indicate that laser modified grinding wheels are comparable in performance to diamond dressed grinding wheels.\",\"PeriodicalId\":350675,\"journal\":{\"name\":\"British Ceramic Transactions\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"British Ceramic Transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1179/096797803225009346\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Ceramic Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1179/096797803225009346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

摘要

磨削是一种制造过程,使工程部件达到所需的表面光洁度。在连续磨削作业中,玻璃化砂轮的磨削效率下降,锋利的切削刃由于形成磨平而变钝。修整本质上是一种锐化操作,它通过在砂轮的切割面上产生特定的地形来解决这个问题。高功率激光作为一种非接触式敷料技术正在被探索。本研究采用高功率激光在玻璃化铝砂轮表面形成再凝固层。高热流密度同时产生固-固相变和固-液相变。修整后的车轮表面的显微组织分析显示出广泛的晶粒细化。在单个磨粒上产生微切削刃。虽然晶粒尺寸分布较宽,但晶粒形状更为规则(等轴),每个晶粒上都有明确的顶点和边缘。顶点和边缘为改善微尺度磨削提供切削刃。使用能量色散面积分析(EDAX)对表面进行面积分析,发现存在Al, Cr, O, Si, K和Na。然而,表面的x射线衍射显示仅存在Al2O3相。上层的再凝固层含有Si、Na、K和P,而下层主要是Al、Cr和O。这表明在表面形成了一个玻璃相(Al、O、Na、K、P和Si)。随后的激光处理改变了玻璃化砂轮表面的形态结构,从而在每个磨粒上产生局部雕刻的微尺度切割边缘的修整效果。实验结果表明,激光修饰砂轮的磨削性能与金刚石修饰砂轮相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Laser dressing of vitrified aluminium oxide grinding wheels
Abstract Grinding is a manufacturing process that produces engineering components to a desired surface finish. In continuous grinding operations, the grinding efficiency of vitrified grinding wheels deteriorates as the sharp cutting edges become blunt as a result of the formation of wear flats. Dressing is essentially a sharpening operation which addresses this problem by generating a specific topography on the cutting face of the grinding wheel. High power lasers are being explored as a non-contact dressing technique. In the present study, a high power laser was used to produce a resolidified layer on the surface of vitrified aluminium grinding wheels. The high heat flux intensity produced both solid-solid and solid-liquid phase transformations. Microstructural analysis of the dressed wheel surface showed extensive grain refinement. Microcutting edges are produced on the individual grinding grains. Though a wide grain size distribution was observed, grain shape was more regular (equiaxed), with well defined vertices and edges on each grain. The vertices and edges provide cutting edges for improved grinding at the microscale. Area analysis of surfaces using energy dispersive area analysis (EDAX) revealed the presence of Al, Cr, O, Si, K, and Na. However, X-ray diffractometry on the surface indicated the presence of Al2O3 phase only. The upper resolidified layer contained Si, Na, K, and P, whereas the material below was primarily Al, Cr, and O. This suggests that a glassy phase (with Al, O, Na, K, P, and Si) is formed on the surface. Subsequent laser treatment modified the morphological structure of the vitrified grinding wheel surface, thus creating a dressing effect with locally sculpted microscale cutting edges on each grinding grain. The experimental results indicate that laser modified grinding wheels are comparable in performance to diamond dressed grinding wheels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.10
自引率
0.00%
发文量
0
期刊最新文献
Impedance spectroscopy of Ba1–xSrxSn0·15Ti0·85O3 ceramics Effect of Nd doping on structural, dielectric and electrical properties of Pb(SnTi)O3 ferroelectric ceramics Gelcasting of alumina ceramic in mixed PVP–HEMA systems Nickel or cobalt doped zinc oxide varistors From the Editor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1