PrefJoin:一个有效的优先级感知连接操作符

Mohamed E. Khalefa, M. Mokbel, Justin J. Levandoski
{"title":"PrefJoin:一个有效的优先级感知连接操作符","authors":"Mohamed E. Khalefa, M. Mokbel, Justin J. Levandoski","doi":"10.1109/ICDE.2011.5767894","DOIUrl":null,"url":null,"abstract":"Preference queries are essential to a wide spectrum of applications including multi-criteria decision-making tools and personalized databases. Unfortunately, most of the evaluation techniques for preference queries assume that the set of preferred attributes are stored in only one relation, waiving on a wide set of queries that include preference computations over multiple relations. This paper presents PrefJoin, an efficient preference-aware join query operator, designed specifically to deal with preference queries over multiple relations. PrefJoin consists of four main phases: Local Pruning, Data Preparation, Joining, and Refining that filter out, from each input relation, those tuples that are guaranteed not to be in the final preference set, associate meta data with each non-filtered tuple that will be used to optimize the execution of the next phases, produce a subset of join result that are relevant for the given preference function, and refine these tuples respectively. An interesting characteristic of PrefJoin is that it tightly integrates preference computation with join hence we can early prune those tuples that are guaranteed not to be an answer, and hence it saves significant unnecessary computations cost. PrefJoin supports a variety of preference function including skyline, multi-objective and k-dominance preference queries. We show the correctness of PrefJoin. Experimental evaluation based on a real system implementation inside PostgreSQL shows that PrefJoin consistently achieves from one to three orders of magnitude performance gain over its competitors in various scenarios.","PeriodicalId":332374,"journal":{"name":"2011 IEEE 27th International Conference on Data Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"PrefJoin: An efficient preference-aware join operator\",\"authors\":\"Mohamed E. Khalefa, M. Mokbel, Justin J. Levandoski\",\"doi\":\"10.1109/ICDE.2011.5767894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Preference queries are essential to a wide spectrum of applications including multi-criteria decision-making tools and personalized databases. Unfortunately, most of the evaluation techniques for preference queries assume that the set of preferred attributes are stored in only one relation, waiving on a wide set of queries that include preference computations over multiple relations. This paper presents PrefJoin, an efficient preference-aware join query operator, designed specifically to deal with preference queries over multiple relations. PrefJoin consists of four main phases: Local Pruning, Data Preparation, Joining, and Refining that filter out, from each input relation, those tuples that are guaranteed not to be in the final preference set, associate meta data with each non-filtered tuple that will be used to optimize the execution of the next phases, produce a subset of join result that are relevant for the given preference function, and refine these tuples respectively. An interesting characteristic of PrefJoin is that it tightly integrates preference computation with join hence we can early prune those tuples that are guaranteed not to be an answer, and hence it saves significant unnecessary computations cost. PrefJoin supports a variety of preference function including skyline, multi-objective and k-dominance preference queries. We show the correctness of PrefJoin. Experimental evaluation based on a real system implementation inside PostgreSQL shows that PrefJoin consistently achieves from one to three orders of magnitude performance gain over its competitors in various scenarios.\",\"PeriodicalId\":332374,\"journal\":{\"name\":\"2011 IEEE 27th International Conference on Data Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 27th International Conference on Data Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.2011.5767894\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 27th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2011.5767894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

偏好查询对于包括多标准决策工具和个性化数据库在内的广泛应用程序都是必不可少的。不幸的是,大多数首选项查询的评估技术都假定首选属性集仅存储在一个关系中,从而忽略了包含多个关系上的首选项计算的广泛查询集。PrefJoin是一种高效的优先级感知连接查询操作符,专门用于处理多个关系上的优先级查询。PrefJoin由四个主要阶段组成:Local Pruning、Data Preparation、Joining和refine,这些阶段从每个输入关系中过滤掉那些保证不在最终首选项集中的元组,将元数据与每个将用于优化下一阶段执行的未过滤元组关联起来,生成与给定首选项函数相关的连接结果子集,并分别对这些元组进行细化。PrefJoin的一个有趣的特点是,它将首选项计算与join紧密地集成在一起,因此我们可以提前修剪那些保证不是答案的元组,从而节省了大量不必要的计算成本。PrefJoin支持各种偏好函数,包括天际线,多目标和k-优势偏好查询。我们将展示PrefJoin的正确性。基于PostgreSQL内部真实系统实现的实验评估表明,在各种场景中,PrefJoin始终比其竞争对手获得一到三个数量级的性能提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PrefJoin: An efficient preference-aware join operator
Preference queries are essential to a wide spectrum of applications including multi-criteria decision-making tools and personalized databases. Unfortunately, most of the evaluation techniques for preference queries assume that the set of preferred attributes are stored in only one relation, waiving on a wide set of queries that include preference computations over multiple relations. This paper presents PrefJoin, an efficient preference-aware join query operator, designed specifically to deal with preference queries over multiple relations. PrefJoin consists of four main phases: Local Pruning, Data Preparation, Joining, and Refining that filter out, from each input relation, those tuples that are guaranteed not to be in the final preference set, associate meta data with each non-filtered tuple that will be used to optimize the execution of the next phases, produce a subset of join result that are relevant for the given preference function, and refine these tuples respectively. An interesting characteristic of PrefJoin is that it tightly integrates preference computation with join hence we can early prune those tuples that are guaranteed not to be an answer, and hence it saves significant unnecessary computations cost. PrefJoin supports a variety of preference function including skyline, multi-objective and k-dominance preference queries. We show the correctness of PrefJoin. Experimental evaluation based on a real system implementation inside PostgreSQL shows that PrefJoin consistently achieves from one to three orders of magnitude performance gain over its competitors in various scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advanced search, visualization and tagging of sensor metadata Bidirectional mining of non-redundant recurrent rules from a sequence database Web-scale information extraction with vertex Characteristic sets: Accurate cardinality estimation for RDF queries with multiple joins Dynamic prioritization of database queries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1