{"title":"具有四种背景的光学重构系统","authors":"N. Yamaguchi, Minoru Watanabe","doi":"10.1109/VLSI.2008.27","DOIUrl":null,"url":null,"abstract":"Optically reconfigurable gate arrays (ORGAs), which consist of a gate array VLSI, a holographic memory, and a laser diode array, are a type of programmable gate array that can achieve rapid reconfiguration and numerous reconfiguration contexts. The gate array of an ORGA is optically reconfigured using diffraction patterns from a holographic memory that is addressed using a laser diode array. It is noteworthy that ORGA-VLSIs which can be reconfigured in nanoseconds without any overhead have already been fabricated. However, to date, no multi- holographic reconfiguration system that is suitable for such rapidly reconfigurable ORGA-VLSIs without any overhead has ever been developed. As the first step toward realizing such a device, a four-context optical system is demonstrated experimentally using a liquid crystal spatial light modulator and a He-Ne laser. This paper describes those experimental results and plans for future work.","PeriodicalId":143886,"journal":{"name":"21st International Conference on VLSI Design (VLSID 2008)","volume":"1992 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Optical Reconfiguration System with Four Contexts\",\"authors\":\"N. Yamaguchi, Minoru Watanabe\",\"doi\":\"10.1109/VLSI.2008.27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optically reconfigurable gate arrays (ORGAs), which consist of a gate array VLSI, a holographic memory, and a laser diode array, are a type of programmable gate array that can achieve rapid reconfiguration and numerous reconfiguration contexts. The gate array of an ORGA is optically reconfigured using diffraction patterns from a holographic memory that is addressed using a laser diode array. It is noteworthy that ORGA-VLSIs which can be reconfigured in nanoseconds without any overhead have already been fabricated. However, to date, no multi- holographic reconfiguration system that is suitable for such rapidly reconfigurable ORGA-VLSIs without any overhead has ever been developed. As the first step toward realizing such a device, a four-context optical system is demonstrated experimentally using a liquid crystal spatial light modulator and a He-Ne laser. This paper describes those experimental results and plans for future work.\",\"PeriodicalId\":143886,\"journal\":{\"name\":\"21st International Conference on VLSI Design (VLSID 2008)\",\"volume\":\"1992 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"21st International Conference on VLSI Design (VLSID 2008)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSI.2008.27\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"21st International Conference on VLSI Design (VLSID 2008)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSI.2008.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Optical Reconfiguration System with Four Contexts
Optically reconfigurable gate arrays (ORGAs), which consist of a gate array VLSI, a holographic memory, and a laser diode array, are a type of programmable gate array that can achieve rapid reconfiguration and numerous reconfiguration contexts. The gate array of an ORGA is optically reconfigured using diffraction patterns from a holographic memory that is addressed using a laser diode array. It is noteworthy that ORGA-VLSIs which can be reconfigured in nanoseconds without any overhead have already been fabricated. However, to date, no multi- holographic reconfiguration system that is suitable for such rapidly reconfigurable ORGA-VLSIs without any overhead has ever been developed. As the first step toward realizing such a device, a four-context optical system is demonstrated experimentally using a liquid crystal spatial light modulator and a He-Ne laser. This paper describes those experimental results and plans for future work.