基于深度强化学习的多工位装配系统物体形状误差校正

S. Sinha, P. Franciosa, D. Ceglarek
{"title":"基于深度强化学习的多工位装配系统物体形状误差校正","authors":"S. Sinha, P. Franciosa, D. Ceglarek","doi":"10.1109/INDIN45523.2021.9557359","DOIUrl":null,"url":null,"abstract":"The paper proposes a novel approach, Object Shape Error Correction (OSEC), to determine corrective action in order to mitigate root cause(s) (RCs) of dimensional and geometric product shape errors. It leverages Deep Deterministic Policy Gradient (DDPG) algorithm to learn optimal process parameters update policies based on high dimensional state estimates of multi-station assembly systems (MAS). These policies can be interpreted in engineering terms as sequential corrective adjustments of process parameters that are necessary to mitigate RCs of product shape errors. The approach has the capability to estimate adjustments of process parameters related to fixturing and joining while simultaneously accounting for (i) RC uncertainty estimation, (ii) Key Performance Indicator (KPI) improvement, (iii) MAS design architecture; and, (iv) MAS inherent stochasticity. In addition, the OSEC methodology leverages a reward function parameterized by user interpretable functional coefficients for optimal tradeoff involving various corrections requirements. Benchmarking using an industrial, automotive cross-member assembly system demonstrates a 40% increase in the effectiveness of corrective actions when compared to current approaches.","PeriodicalId":370921,"journal":{"name":"2021 IEEE 19th International Conference on Industrial Informatics (INDIN)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Object Shape Error Correction using Deep Reinforcement Learning for Multi-Station Assembly Systems\",\"authors\":\"S. Sinha, P. Franciosa, D. Ceglarek\",\"doi\":\"10.1109/INDIN45523.2021.9557359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper proposes a novel approach, Object Shape Error Correction (OSEC), to determine corrective action in order to mitigate root cause(s) (RCs) of dimensional and geometric product shape errors. It leverages Deep Deterministic Policy Gradient (DDPG) algorithm to learn optimal process parameters update policies based on high dimensional state estimates of multi-station assembly systems (MAS). These policies can be interpreted in engineering terms as sequential corrective adjustments of process parameters that are necessary to mitigate RCs of product shape errors. The approach has the capability to estimate adjustments of process parameters related to fixturing and joining while simultaneously accounting for (i) RC uncertainty estimation, (ii) Key Performance Indicator (KPI) improvement, (iii) MAS design architecture; and, (iv) MAS inherent stochasticity. In addition, the OSEC methodology leverages a reward function parameterized by user interpretable functional coefficients for optimal tradeoff involving various corrections requirements. Benchmarking using an industrial, automotive cross-member assembly system demonstrates a 40% increase in the effectiveness of corrective actions when compared to current approaches.\",\"PeriodicalId\":370921,\"journal\":{\"name\":\"2021 IEEE 19th International Conference on Industrial Informatics (INDIN)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 19th International Conference on Industrial Informatics (INDIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDIN45523.2021.9557359\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 19th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN45523.2021.9557359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的方法,物体形状误差校正(OSEC),以确定纠正措施,以减轻尺寸和几何产品形状误差的根本原因(rc)。它利用深度确定性策略梯度(DDPG)算法学习基于高维状态估计的多工位装配系统(MAS)的最优工艺参数更新策略。这些政策可以在工程术语中解释为对工艺参数的顺序校正调整,这是减轻产品形状误差的rc所必需的。该方法能够估计与固定和连接相关的过程参数的调整,同时考虑(i) RC不确定性估计,(ii)关键绩效指标(KPI)改进,(iii) MAS设计架构;(iv) MAS固有的随机性。此外,OSEC方法利用由用户可解释的功能系数参数化的奖励函数,以实现涉及各种修正要求的最佳权衡。采用工业汽车交叉构件装配系统的基准测试表明,与目前的方法相比,纠正措施的有效性提高了40%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Object Shape Error Correction using Deep Reinforcement Learning for Multi-Station Assembly Systems
The paper proposes a novel approach, Object Shape Error Correction (OSEC), to determine corrective action in order to mitigate root cause(s) (RCs) of dimensional and geometric product shape errors. It leverages Deep Deterministic Policy Gradient (DDPG) algorithm to learn optimal process parameters update policies based on high dimensional state estimates of multi-station assembly systems (MAS). These policies can be interpreted in engineering terms as sequential corrective adjustments of process parameters that are necessary to mitigate RCs of product shape errors. The approach has the capability to estimate adjustments of process parameters related to fixturing and joining while simultaneously accounting for (i) RC uncertainty estimation, (ii) Key Performance Indicator (KPI) improvement, (iii) MAS design architecture; and, (iv) MAS inherent stochasticity. In addition, the OSEC methodology leverages a reward function parameterized by user interpretable functional coefficients for optimal tradeoff involving various corrections requirements. Benchmarking using an industrial, automotive cross-member assembly system demonstrates a 40% increase in the effectiveness of corrective actions when compared to current approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fault Classification for Wind Turbine Benchmark Model Based on Hilbert-Huang Transformation and Support Vector Machine Strategies [INDIN 2021 Front cover] Synergetic Control of Fixed-wing UAVs in the Presence of Wind Disturbances From Face to Face to Hybrid Teaching: an Experience on Process Plant Automation Laboratory Course during Global Pandemic Towards Policy-based Task Self-Reallocation in Dynamic Edge Computing Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1