基于改进特征匹配方法的高精度手写体汉字识别

Cheng-Lin Liu, In-Jung Kim, J. H. Kim
{"title":"基于改进特征匹配方法的高精度手写体汉字识别","authors":"Cheng-Lin Liu, In-Jung Kim, J. H. Kim","doi":"10.1109/ICDAR.1997.620666","DOIUrl":null,"url":null,"abstract":"Proposes some strategies to improve the recognition performance of a feature matching method for handwritten Chinese character recognition (HCCR). Favorable modifications are given to all stages throughout the recognition. In pre-processing, we devised a modified nonlinear normalization algorithm and a connectivity-preserving smoothing algorithm. For feature extraction, an efficient directional decomposition algorithm and a systematic approach to design a blurring mask are presented. Finally, a modified LVQ3 algorithm is applied to optimize the reference vectors for classification. The integrated effect of these strategies significantly improves the recognition performance. Recognition results on the large-vocabulary databases ETL8B2 and ETL9B are promising.","PeriodicalId":435320,"journal":{"name":"Proceedings of the Fourth International Conference on Document Analysis and Recognition","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"High accuracy handwritten Chinese character recognition by improved feature matching method\",\"authors\":\"Cheng-Lin Liu, In-Jung Kim, J. H. Kim\",\"doi\":\"10.1109/ICDAR.1997.620666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Proposes some strategies to improve the recognition performance of a feature matching method for handwritten Chinese character recognition (HCCR). Favorable modifications are given to all stages throughout the recognition. In pre-processing, we devised a modified nonlinear normalization algorithm and a connectivity-preserving smoothing algorithm. For feature extraction, an efficient directional decomposition algorithm and a systematic approach to design a blurring mask are presented. Finally, a modified LVQ3 algorithm is applied to optimize the reference vectors for classification. The integrated effect of these strategies significantly improves the recognition performance. Recognition results on the large-vocabulary databases ETL8B2 and ETL9B are promising.\",\"PeriodicalId\":435320,\"journal\":{\"name\":\"Proceedings of the Fourth International Conference on Document Analysis and Recognition\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fourth International Conference on Document Analysis and Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDAR.1997.620666\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fourth International Conference on Document Analysis and Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.1997.620666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

提出了一些改进手写体汉字识别特征匹配方法识别性能的策略。在整个识别过程中,对各个阶段进行了有利的修改。在预处理中,我们设计了一种改进的非线性归一化算法和一种保持连通性的平滑算法。在特征提取方面,提出了一种有效的方向分解算法和系统的模糊掩模设计方法。最后,采用改进的LVQ3算法对参考向量进行优化分类。这些策略的综合作用显著提高了识别性能。在大词汇库ETL8B2和ETL9B上的识别结果令人满意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High accuracy handwritten Chinese character recognition by improved feature matching method
Proposes some strategies to improve the recognition performance of a feature matching method for handwritten Chinese character recognition (HCCR). Favorable modifications are given to all stages throughout the recognition. In pre-processing, we devised a modified nonlinear normalization algorithm and a connectivity-preserving smoothing algorithm. For feature extraction, an efficient directional decomposition algorithm and a systematic approach to design a blurring mask are presented. Finally, a modified LVQ3 algorithm is applied to optimize the reference vectors for classification. The integrated effect of these strategies significantly improves the recognition performance. Recognition results on the large-vocabulary databases ETL8B2 and ETL9B are promising.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Document layout analysis based on emergent computation Offline handwritten Chinese character recognition via radical extraction and recognition Boundary normalization for recognition of non-touching non-degraded characters Words recognition using associative memory Image and text coupling for creating electronic books from manuscripts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1