{"title":"汽车雾环境下太阳能集成电动汽车实时能源管理","authors":"Ashfaq Ahmad, J. Khan","doi":"10.1109/SmartGridComm.2019.8909755","DOIUrl":null,"url":null,"abstract":"We investigate a real-time energy management technique for grid-connected photovoltaic (PV) integrated electric vehicles (EVs) as-service-over vehicular fog. Considering unknown dynamics of system inputs, we employ a virtual queue stability based Lyapunov optimization technique to minimize an average system cost through joint optimization of EV’s PV sufficiency, driving task scheduling delays, energy procurement cost, and EV battery (EVB) management. We obtain all solutions in closed forms which can be easily implemented in real-time EVs asservice-over vehicular fog. Results show that our propositions could achieve a daily EV’s PV sufficiency up to 44.25% and a monthly bill reduction up to 41.80%, while satisfying EV user’s delay and energy requirements.","PeriodicalId":377150,"journal":{"name":"2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-time Energy Management of Solar-integrated Electric Vehicles as-service-over Vehicular Fog\",\"authors\":\"Ashfaq Ahmad, J. Khan\",\"doi\":\"10.1109/SmartGridComm.2019.8909755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate a real-time energy management technique for grid-connected photovoltaic (PV) integrated electric vehicles (EVs) as-service-over vehicular fog. Considering unknown dynamics of system inputs, we employ a virtual queue stability based Lyapunov optimization technique to minimize an average system cost through joint optimization of EV’s PV sufficiency, driving task scheduling delays, energy procurement cost, and EV battery (EVB) management. We obtain all solutions in closed forms which can be easily implemented in real-time EVs asservice-over vehicular fog. Results show that our propositions could achieve a daily EV’s PV sufficiency up to 44.25% and a monthly bill reduction up to 41.80%, while satisfying EV user’s delay and energy requirements.\",\"PeriodicalId\":377150,\"journal\":{\"name\":\"2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartGridComm.2019.8909755\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm.2019.8909755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Real-time Energy Management of Solar-integrated Electric Vehicles as-service-over Vehicular Fog
We investigate a real-time energy management technique for grid-connected photovoltaic (PV) integrated electric vehicles (EVs) as-service-over vehicular fog. Considering unknown dynamics of system inputs, we employ a virtual queue stability based Lyapunov optimization technique to minimize an average system cost through joint optimization of EV’s PV sufficiency, driving task scheduling delays, energy procurement cost, and EV battery (EVB) management. We obtain all solutions in closed forms which can be easily implemented in real-time EVs asservice-over vehicular fog. Results show that our propositions could achieve a daily EV’s PV sufficiency up to 44.25% and a monthly bill reduction up to 41.80%, while satisfying EV user’s delay and energy requirements.