基于不同深度学习方法的预训练模块的暴力检测

Shakil Ahmed Sumon, Raihan Goni, Niyaz Bin Hashem, Md. Tanzil Shahria, R. Rahman
{"title":"基于不同深度学习方法的预训练模块的暴力检测","authors":"Shakil Ahmed Sumon, Raihan Goni, Niyaz Bin Hashem, Md. Tanzil Shahria, R. Rahman","doi":"10.1142/s2196888820500013","DOIUrl":null,"url":null,"abstract":"In this paper, we have explored different strategies to find out the saliency of the features from different pretrained models in detecting violence in videos. A dataset has been created which consists of violent and non-violent videos of different settings. Three ImageNet models; VGG16, VGG19, ResNet50 are being used to extract features from the frames of the videos. In one of the experiments, the extracted features have been feed into a fully connected network which detects violence in frame level. Moreover, in another experiment, we have fed the extracted features of 30 frames to a long short-term memory (LSTM) network at a time. Furthermore, we have applied attention to the features extracted from the frames through spatial transformer network which also enables transformations like rotation, translation and scale. Along with these models, we have designed a custom convolutional neural network (CNN) as a feature extractor and a pretrained model which is initially trained on a movie violence dataset. In the end, the features extracted from the ResNet50 pretrained model proved to be more salient towards detecting violence. These ResNet50 features, in combination with LSTM provide an accuracy of 97.06% which is better than the other models we have experimented with.","PeriodicalId":256649,"journal":{"name":"Vietnam. J. Comput. Sci.","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Violence Detection by Pretrained Modules with Different Deep Learning Approaches\",\"authors\":\"Shakil Ahmed Sumon, Raihan Goni, Niyaz Bin Hashem, Md. Tanzil Shahria, R. Rahman\",\"doi\":\"10.1142/s2196888820500013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we have explored different strategies to find out the saliency of the features from different pretrained models in detecting violence in videos. A dataset has been created which consists of violent and non-violent videos of different settings. Three ImageNet models; VGG16, VGG19, ResNet50 are being used to extract features from the frames of the videos. In one of the experiments, the extracted features have been feed into a fully connected network which detects violence in frame level. Moreover, in another experiment, we have fed the extracted features of 30 frames to a long short-term memory (LSTM) network at a time. Furthermore, we have applied attention to the features extracted from the frames through spatial transformer network which also enables transformations like rotation, translation and scale. Along with these models, we have designed a custom convolutional neural network (CNN) as a feature extractor and a pretrained model which is initially trained on a movie violence dataset. In the end, the features extracted from the ResNet50 pretrained model proved to be more salient towards detecting violence. These ResNet50 features, in combination with LSTM provide an accuracy of 97.06% which is better than the other models we have experimented with.\",\"PeriodicalId\":256649,\"journal\":{\"name\":\"Vietnam. J. Comput. Sci.\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vietnam. J. Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s2196888820500013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vietnam. J. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2196888820500013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

在本文中,我们探索了不同的策略来发现不同的预训练模型在视频暴力检测中的显著性。已经创建了一个由不同设置的暴力和非暴力视频组成的数据集。三个ImageNet模型;VGG16, VGG19, ResNet50用于从视频帧中提取特征。在其中一个实验中,提取的特征被输入到一个完全连接的网络中,该网络在帧级检测暴力。此外,在另一个实验中,我们一次将提取的30帧特征输入到长短期记忆(LSTM)网络中。此外,我们还注意到通过空间变压器网络从帧中提取的特征,该网络还可以进行旋转、平移和缩放等变换。除了这些模型,我们还设计了一个自定义卷积神经网络(CNN)作为特征提取器和一个预训练模型,该模型最初是在电影暴力数据集上训练的。最后,从ResNet50预训练模型中提取的特征被证明在检测暴力方面更为突出。这些ResNet50特征与LSTM相结合,提供了97.06%的准确率,比我们实验过的其他模型要好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Violence Detection by Pretrained Modules with Different Deep Learning Approaches
In this paper, we have explored different strategies to find out the saliency of the features from different pretrained models in detecting violence in videos. A dataset has been created which consists of violent and non-violent videos of different settings. Three ImageNet models; VGG16, VGG19, ResNet50 are being used to extract features from the frames of the videos. In one of the experiments, the extracted features have been feed into a fully connected network which detects violence in frame level. Moreover, in another experiment, we have fed the extracted features of 30 frames to a long short-term memory (LSTM) network at a time. Furthermore, we have applied attention to the features extracted from the frames through spatial transformer network which also enables transformations like rotation, translation and scale. Along with these models, we have designed a custom convolutional neural network (CNN) as a feature extractor and a pretrained model which is initially trained on a movie violence dataset. In the end, the features extracted from the ResNet50 pretrained model proved to be more salient towards detecting violence. These ResNet50 features, in combination with LSTM provide an accuracy of 97.06% which is better than the other models we have experimented with.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improving Arabic Sentiment Analysis Using LSTM Based on Word Embedding Models Synthetic Data Generation for Morphological Analyses of Histopathology Images with Deep Learning Models Generating Popularity-Aware Reciprocal Recommendations Using Siamese Bi-Directional Gated Recurrent Units Network Hyperparameter Optimization of a Parallelized LSTM for Time Series Prediction Natural Language Processing and Sentiment Analysis on Bangla Social Media Comments on Russia-Ukraine War Using Transformers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1