对采用同步压电器件驱动的高精度舞台采用砰砰补偿器进行非线性补偿

K. Tsuruta, Kazuya Sato, Sunao Sawada, K. Kosaka
{"title":"对采用同步压电器件驱动的高精度舞台采用砰砰补偿器进行非线性补偿","authors":"K. Tsuruta, Kazuya Sato, Sunao Sawada, K. Kosaka","doi":"10.1109/AMC.2010.5464111","DOIUrl":null,"url":null,"abstract":"The need for high precision and a fast response time in positioning tables in the machine tool and semiconductor fields has grown. To achieve such requirements, a synchronous piezoelectric device driver to control the stage has been proposed. The stage is driven by the scratching force of this device, but the control performance was shown to be affected by the nonlinear friction force. Thus, a friction compensation method which was based on PID+FF control with sliding mode compensator was proposed for a high precision stage control [1]. In this paper, we propose an alternative compensation method, consisting of the conventional method with a bang-bang friction compensator. Experimental results are given to show the effectiveness of our proposed method. Using our new method, the high frequency fluctuation phenomena in the control input becomes smaller than in the conventional method.","PeriodicalId":406900,"journal":{"name":"2010 11th IEEE International Workshop on Advanced Motion Control (AMC)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Nonlinear compensation method with bang-bang compensator for a high precision stage using synchronous piezoelectric device driver\",\"authors\":\"K. Tsuruta, Kazuya Sato, Sunao Sawada, K. Kosaka\",\"doi\":\"10.1109/AMC.2010.5464111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The need for high precision and a fast response time in positioning tables in the machine tool and semiconductor fields has grown. To achieve such requirements, a synchronous piezoelectric device driver to control the stage has been proposed. The stage is driven by the scratching force of this device, but the control performance was shown to be affected by the nonlinear friction force. Thus, a friction compensation method which was based on PID+FF control with sliding mode compensator was proposed for a high precision stage control [1]. In this paper, we propose an alternative compensation method, consisting of the conventional method with a bang-bang friction compensator. Experimental results are given to show the effectiveness of our proposed method. Using our new method, the high frequency fluctuation phenomena in the control input becomes smaller than in the conventional method.\",\"PeriodicalId\":406900,\"journal\":{\"name\":\"2010 11th IEEE International Workshop on Advanced Motion Control (AMC)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 11th IEEE International Workshop on Advanced Motion Control (AMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AMC.2010.5464111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 11th IEEE International Workshop on Advanced Motion Control (AMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMC.2010.5464111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在机床和半导体领域,对高精度和快速响应时间的定位工作台的需求不断增长。为了实现这一要求,提出了一种同步压电器件驱动器来控制舞台。平台由该装置的刮擦力驱动,但非线性摩擦力对控制性能有影响。为此,提出了一种基于PID+FF控制和滑模补偿器的摩擦补偿方法,用于高精度级控制[1]。在本文中,我们提出了一种替代补偿方法,由传统的方法与砰砰摩擦补偿器组成。实验结果表明了该方法的有效性。采用新方法后,控制输入的高频波动现象比传统方法减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nonlinear compensation method with bang-bang compensator for a high precision stage using synchronous piezoelectric device driver
The need for high precision and a fast response time in positioning tables in the machine tool and semiconductor fields has grown. To achieve such requirements, a synchronous piezoelectric device driver to control the stage has been proposed. The stage is driven by the scratching force of this device, but the control performance was shown to be affected by the nonlinear friction force. Thus, a friction compensation method which was based on PID+FF control with sliding mode compensator was proposed for a high precision stage control [1]. In this paper, we propose an alternative compensation method, consisting of the conventional method with a bang-bang friction compensator. Experimental results are given to show the effectiveness of our proposed method. Using our new method, the high frequency fluctuation phenomena in the control input becomes smaller than in the conventional method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Incremental closed-form solution to globally consistent 2D range scan mapping with two-step pose estimation A proposal of feature extraction for impression analysis Advanced contouring error compensation in high performance motion control systems Smooth touch and force control to unknown environment without force sensor for industrial robot A simplified structure for robustness enhancement of time-delay systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1