一类自适应加权范数外推算法的收敛性分析

I. Gorodnitsky, B. Rao
{"title":"一类自适应加权范数外推算法的收敛性分析","authors":"I. Gorodnitsky, B. Rao","doi":"10.1109/ACSSC.1993.342530","DOIUrl":null,"url":null,"abstract":"Adaptive weighted norm extrapolation algorithms can provide superior performance for estimation of sparse signals from limited data. We present theoretical analysis results for a class of these algorithms that include a proof of the global convergence, the rate of convergence derivation, and characterization of the fixed points. We also propose a general class of adaptive weighted extrapolation algorithms and introduce a more general problem formulation which greatly expands the range of applications of the algorithm.<<ETX>>","PeriodicalId":266447,"journal":{"name":"Proceedings of 27th Asilomar Conference on Signals, Systems and Computers","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Convergence analysis of a class of adaptive weighted norm extrapolation algorithms\",\"authors\":\"I. Gorodnitsky, B. Rao\",\"doi\":\"10.1109/ACSSC.1993.342530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adaptive weighted norm extrapolation algorithms can provide superior performance for estimation of sparse signals from limited data. We present theoretical analysis results for a class of these algorithms that include a proof of the global convergence, the rate of convergence derivation, and characterization of the fixed points. We also propose a general class of adaptive weighted extrapolation algorithms and introduce a more general problem formulation which greatly expands the range of applications of the algorithm.<<ETX>>\",\"PeriodicalId\":266447,\"journal\":{\"name\":\"Proceedings of 27th Asilomar Conference on Signals, Systems and Computers\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 27th Asilomar Conference on Signals, Systems and Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACSSC.1993.342530\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 27th Asilomar Conference on Signals, Systems and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.1993.342530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

自适应加权范数外推算法对于有限数据的稀疏信号估计具有较好的性能。我们给出了这类算法的理论分析结果,包括全局收敛性的证明、收敛率的推导和不动点的表征。我们还提出了一类一般的自适应加权外推算法,并引入了一个更一般的问题公式,极大地扩展了算法的应用范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Convergence analysis of a class of adaptive weighted norm extrapolation algorithms
Adaptive weighted norm extrapolation algorithms can provide superior performance for estimation of sparse signals from limited data. We present theoretical analysis results for a class of these algorithms that include a proof of the global convergence, the rate of convergence derivation, and characterization of the fixed points. We also propose a general class of adaptive weighted extrapolation algorithms and introduce a more general problem formulation which greatly expands the range of applications of the algorithm.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Estimating error diffusion kernel from error diffused images Optical-to-SAR image registration using the active contour model Efficient organization of large ship radar databases using wavelets and structured vector quantization Signal processing using the generalized Taylor series expansion Evaluation of a model based data fusion algorithm with multi-mode OTHR data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1