{"title":"超高速全尺寸gpu加速全局路由","authors":"Shiju Lin, Martin D. F. Wong","doi":"10.1145/3508352.3549474","DOIUrl":null,"url":null,"abstract":"Global routing is an essential step in physical design. Recently there are works on accelerating global routers using GPU. However, they only focus on certain stages of global routing, and have limited overall speedup. In this paper, we present a superfast full-scale GPU-accelerated global router and introduce useful parallelization techniques for routing. Experiments show that our 3D router achieves both good quality and short runtime compared to other state-of-the-art academic global routers.","PeriodicalId":270592,"journal":{"name":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Superfast Full-Scale GPU-Accelerated Global Routing\",\"authors\":\"Shiju Lin, Martin D. F. Wong\",\"doi\":\"10.1145/3508352.3549474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Global routing is an essential step in physical design. Recently there are works on accelerating global routers using GPU. However, they only focus on certain stages of global routing, and have limited overall speedup. In this paper, we present a superfast full-scale GPU-accelerated global router and introduce useful parallelization techniques for routing. Experiments show that our 3D router achieves both good quality and short runtime compared to other state-of-the-art academic global routers.\",\"PeriodicalId\":270592,\"journal\":{\"name\":\"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3508352.3549474\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3508352.3549474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Superfast Full-Scale GPU-Accelerated Global Routing
Global routing is an essential step in physical design. Recently there are works on accelerating global routers using GPU. However, they only focus on certain stages of global routing, and have limited overall speedup. In this paper, we present a superfast full-scale GPU-accelerated global router and introduce useful parallelization techniques for routing. Experiments show that our 3D router achieves both good quality and short runtime compared to other state-of-the-art academic global routers.