分类问题的多模态数据评价

Daniela Moctezuma, Víctor Muñiz, Jorge Garcia
{"title":"分类问题的多模态数据评价","authors":"Daniela Moctezuma, Víctor Muñiz, Jorge Garcia","doi":"10.5121/csit.2021.112105","DOIUrl":null,"url":null,"abstract":"Social media data is currently the main input to a wide variety of research works in many knowledge fields. This kind of data is generally multimodal, i.e., it contains different modalities of information such as text, images, video or audio, mainly. To deal with multimodal data to tackle a specific task could be very difficult. One of the main challenges is to find useful representations of the data, capable of capturing the subtle information that the users who generate that information provided, or even the way they use it. In this paper, we analysed the usage of two modalities of data, images, and text, both in a separate way and by combining them to address two classification problems: meme's classification and user profiling. For images, we use a textual semantic representation by using a pre-trained model of image captioning. Later, a text classifier based on optimal lexical representations was used to build a classification model. Interesting findings were found in the usage of these two modalities of data, and the pros and cons of using them to solve the two classification problems are also discussed.","PeriodicalId":190330,"journal":{"name":"Web, Internet Engineering & Signal Processing","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multimodal Data Evaluation for Classification Problems\",\"authors\":\"Daniela Moctezuma, Víctor Muñiz, Jorge Garcia\",\"doi\":\"10.5121/csit.2021.112105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Social media data is currently the main input to a wide variety of research works in many knowledge fields. This kind of data is generally multimodal, i.e., it contains different modalities of information such as text, images, video or audio, mainly. To deal with multimodal data to tackle a specific task could be very difficult. One of the main challenges is to find useful representations of the data, capable of capturing the subtle information that the users who generate that information provided, or even the way they use it. In this paper, we analysed the usage of two modalities of data, images, and text, both in a separate way and by combining them to address two classification problems: meme's classification and user profiling. For images, we use a textual semantic representation by using a pre-trained model of image captioning. Later, a text classifier based on optimal lexical representations was used to build a classification model. Interesting findings were found in the usage of these two modalities of data, and the pros and cons of using them to solve the two classification problems are also discussed.\",\"PeriodicalId\":190330,\"journal\":{\"name\":\"Web, Internet Engineering & Signal Processing\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Web, Internet Engineering & Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/csit.2021.112105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Web, Internet Engineering & Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/csit.2021.112105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

社交媒体数据目前是许多知识领域各种研究工作的主要输入。这类数据通常是多模态的,即包含不同模态的信息,主要是文本、图像、视频或音频。处理多模态数据以处理特定任务可能非常困难。主要的挑战之一是找到有用的数据表示,能够捕获生成这些信息的用户提供的细微信息,甚至是他们使用这些信息的方式。在本文中,我们分析了数据,图像和文本的两种模式的使用,两者都以单独的方式和通过结合它们来解决两个分类问题:模因的分类和用户分析。对于图像,我们通过使用预训练的图像标题模型来使用文本语义表示。然后,使用基于最优词法表示的文本分类器构建分类模型。在使用这两种数据模式时发现了有趣的发现,并讨论了使用它们来解决这两个分类问题的优缺点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multimodal Data Evaluation for Classification Problems
Social media data is currently the main input to a wide variety of research works in many knowledge fields. This kind of data is generally multimodal, i.e., it contains different modalities of information such as text, images, video or audio, mainly. To deal with multimodal data to tackle a specific task could be very difficult. One of the main challenges is to find useful representations of the data, capable of capturing the subtle information that the users who generate that information provided, or even the way they use it. In this paper, we analysed the usage of two modalities of data, images, and text, both in a separate way and by combining them to address two classification problems: meme's classification and user profiling. For images, we use a textual semantic representation by using a pre-trained model of image captioning. Later, a text classifier based on optimal lexical representations was used to build a classification model. Interesting findings were found in the usage of these two modalities of data, and the pros and cons of using them to solve the two classification problems are also discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Study of the Classification of Motor Imagery Signals using Machine Learning Tools Thermal Comfort of the Environment with Internet of Things, Big Data and Machine Learning Temporal-Sound based User Interface for Smart Home Small Delay Tracing Defect Testing Multimodal Data Evaluation for Classification Problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1