NIRS-DOT中具有ARD先验的变分贝叶斯方法的相图

Atsushi Miyamoto, Kazuho Watanabe, K. Ikeda, Masa-aki Sato
{"title":"NIRS-DOT中具有ARD先验的变分贝叶斯方法的相图","authors":"Atsushi Miyamoto, Kazuho Watanabe, K. Ikeda, Masa-aki Sato","doi":"10.1109/IJCNN.2011.6033364","DOIUrl":null,"url":null,"abstract":"Diffuse optical tomography is a method used to reconstruct tomographic images from brain activities observed by near-infrared spectroscopy. This is useful for brain-machine interface and is formulated as an ill-posed inverse problem. We apply a hierarchical Bayesian approach, automatic relevance determination (ARD) prior and the variational Bayes method, that can introduce localization into the estimation of the problem. Although ARD enables sparse estimation, it is still open how hyperparameters affect the sparseness and accuracy of the estimation. Through numerical experiments, we present a schematic phase diagram of sparseness with respect to the hyperparameters in the method, which indicates the region of the hyperparameters where sparse estimation is achievable.","PeriodicalId":415833,"journal":{"name":"The 2011 International Joint Conference on Neural Networks","volume":"93 10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Phase diagrams of a variational Bayesian approach with ARD prior in NIRS-DOT\",\"authors\":\"Atsushi Miyamoto, Kazuho Watanabe, K. Ikeda, Masa-aki Sato\",\"doi\":\"10.1109/IJCNN.2011.6033364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diffuse optical tomography is a method used to reconstruct tomographic images from brain activities observed by near-infrared spectroscopy. This is useful for brain-machine interface and is formulated as an ill-posed inverse problem. We apply a hierarchical Bayesian approach, automatic relevance determination (ARD) prior and the variational Bayes method, that can introduce localization into the estimation of the problem. Although ARD enables sparse estimation, it is still open how hyperparameters affect the sparseness and accuracy of the estimation. Through numerical experiments, we present a schematic phase diagram of sparseness with respect to the hyperparameters in the method, which indicates the region of the hyperparameters where sparse estimation is achievable.\",\"PeriodicalId\":415833,\"journal\":{\"name\":\"The 2011 International Joint Conference on Neural Networks\",\"volume\":\"93 10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2011 International Joint Conference on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2011.6033364\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2011 International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2011.6033364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

漫射光学层析成像是一种用近红外光谱观察大脑活动重建层析图像的方法。这对脑机接口是有用的,并被表述为不适定逆问题。我们应用了层次贝叶斯方法、自动关联确定(ARD)先验和变分贝叶斯方法,将定位引入到问题的估计中。虽然ARD实现了稀疏估计,但超参数如何影响估计的稀疏性和准确性仍然是开放的。通过数值实验,给出了该方法中超参数的稀疏性相位示意图,指出了该方法中可实现稀疏估计的超参数区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Phase diagrams of a variational Bayesian approach with ARD prior in NIRS-DOT
Diffuse optical tomography is a method used to reconstruct tomographic images from brain activities observed by near-infrared spectroscopy. This is useful for brain-machine interface and is formulated as an ill-posed inverse problem. We apply a hierarchical Bayesian approach, automatic relevance determination (ARD) prior and the variational Bayes method, that can introduce localization into the estimation of the problem. Although ARD enables sparse estimation, it is still open how hyperparameters affect the sparseness and accuracy of the estimation. Through numerical experiments, we present a schematic phase diagram of sparseness with respect to the hyperparameters in the method, which indicates the region of the hyperparameters where sparse estimation is achievable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chaos of protein folding EEG-based brain dynamics of driving distraction Residential energy system control and management using adaptive dynamic programming How the core theory of CLARION captures human decision-making Wiener systems for reconstruction of missing seismic traces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1