Atsushi Miyamoto, Kazuho Watanabe, K. Ikeda, Masa-aki Sato
{"title":"NIRS-DOT中具有ARD先验的变分贝叶斯方法的相图","authors":"Atsushi Miyamoto, Kazuho Watanabe, K. Ikeda, Masa-aki Sato","doi":"10.1109/IJCNN.2011.6033364","DOIUrl":null,"url":null,"abstract":"Diffuse optical tomography is a method used to reconstruct tomographic images from brain activities observed by near-infrared spectroscopy. This is useful for brain-machine interface and is formulated as an ill-posed inverse problem. We apply a hierarchical Bayesian approach, automatic relevance determination (ARD) prior and the variational Bayes method, that can introduce localization into the estimation of the problem. Although ARD enables sparse estimation, it is still open how hyperparameters affect the sparseness and accuracy of the estimation. Through numerical experiments, we present a schematic phase diagram of sparseness with respect to the hyperparameters in the method, which indicates the region of the hyperparameters where sparse estimation is achievable.","PeriodicalId":415833,"journal":{"name":"The 2011 International Joint Conference on Neural Networks","volume":"93 10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Phase diagrams of a variational Bayesian approach with ARD prior in NIRS-DOT\",\"authors\":\"Atsushi Miyamoto, Kazuho Watanabe, K. Ikeda, Masa-aki Sato\",\"doi\":\"10.1109/IJCNN.2011.6033364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diffuse optical tomography is a method used to reconstruct tomographic images from brain activities observed by near-infrared spectroscopy. This is useful for brain-machine interface and is formulated as an ill-posed inverse problem. We apply a hierarchical Bayesian approach, automatic relevance determination (ARD) prior and the variational Bayes method, that can introduce localization into the estimation of the problem. Although ARD enables sparse estimation, it is still open how hyperparameters affect the sparseness and accuracy of the estimation. Through numerical experiments, we present a schematic phase diagram of sparseness with respect to the hyperparameters in the method, which indicates the region of the hyperparameters where sparse estimation is achievable.\",\"PeriodicalId\":415833,\"journal\":{\"name\":\"The 2011 International Joint Conference on Neural Networks\",\"volume\":\"93 10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2011 International Joint Conference on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2011.6033364\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2011 International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2011.6033364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Phase diagrams of a variational Bayesian approach with ARD prior in NIRS-DOT
Diffuse optical tomography is a method used to reconstruct tomographic images from brain activities observed by near-infrared spectroscopy. This is useful for brain-machine interface and is formulated as an ill-posed inverse problem. We apply a hierarchical Bayesian approach, automatic relevance determination (ARD) prior and the variational Bayes method, that can introduce localization into the estimation of the problem. Although ARD enables sparse estimation, it is still open how hyperparameters affect the sparseness and accuracy of the estimation. Through numerical experiments, we present a schematic phase diagram of sparseness with respect to the hyperparameters in the method, which indicates the region of the hyperparameters where sparse estimation is achievable.