混合广义伽玛分布的R包

W. Phaphan, Thanee Ananitthi, I. Abdullahi, Sthaporn Thepsumritporn
{"title":"混合广义伽玛分布的R包","authors":"W. Phaphan, Thanee Ananitthi, I. Abdullahi, Sthaporn Thepsumritporn","doi":"10.1109/RI2C56397.2022.9910325","DOIUrl":null,"url":null,"abstract":"This paper is interested in creating an R language package for a mixture generalized gamma distribution as Suksaengrakcharoen and Bodhisuwan [1] introduced. In order to be easy for practical use and be highly beneficial to the applications of engineering and medical science, the R-language package consists of four functions: (1) a probability density function (2) a distribution function (3) a random generation, and (4) a parameter estimation function.","PeriodicalId":403083,"journal":{"name":"2022 Research, Invention, and Innovation Congress: Innovative Electricals and Electronics (RI2C)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MGGD: R Package for Mixture Generalized Gamma Distribution\",\"authors\":\"W. Phaphan, Thanee Ananitthi, I. Abdullahi, Sthaporn Thepsumritporn\",\"doi\":\"10.1109/RI2C56397.2022.9910325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is interested in creating an R language package for a mixture generalized gamma distribution as Suksaengrakcharoen and Bodhisuwan [1] introduced. In order to be easy for practical use and be highly beneficial to the applications of engineering and medical science, the R-language package consists of four functions: (1) a probability density function (2) a distribution function (3) a random generation, and (4) a parameter estimation function.\",\"PeriodicalId\":403083,\"journal\":{\"name\":\"2022 Research, Invention, and Innovation Congress: Innovative Electricals and Electronics (RI2C)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Research, Invention, and Innovation Congress: Innovative Electricals and Electronics (RI2C)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RI2C56397.2022.9910325\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Research, Invention, and Innovation Congress: Innovative Electricals and Electronics (RI2C)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RI2C56397.2022.9910325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文感兴趣的是为Suksaengrakcharoen和Bodhisuwan[1]所介绍的混合广义伽马分布创建一个R语言包。为了便于实际使用并对工程和医学的应用有很大的帮助,r语言包由四个函数组成:(1)概率密度函数(2)分布函数(3)随机生成函数(4)参数估计函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MGGD: R Package for Mixture Generalized Gamma Distribution
This paper is interested in creating an R language package for a mixture generalized gamma distribution as Suksaengrakcharoen and Bodhisuwan [1] introduced. In order to be easy for practical use and be highly beneficial to the applications of engineering and medical science, the R-language package consists of four functions: (1) a probability density function (2) a distribution function (3) a random generation, and (4) a parameter estimation function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hyperparameter Tuning in Convolutional Neural Network for Face Touching Activity Recognition using Accelerometer Data RI2C 2022 Cover Page CNN based Automatic Detection of Defective Photovoltaic Modules using Aerial Imagery Metaverse for Developing Engineering Competency A Comparative Study of Deep Convolutional Neural Networks for Car Image Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1