变工况下DC-DC变换器的预测方法

Yi Wu, You-ren Wang, Yuanyuan Jiang, Quan Sun
{"title":"变工况下DC-DC变换器的预测方法","authors":"Yi Wu, You-ren Wang, Yuanyuan Jiang, Quan Sun","doi":"10.1109/ICPHM.2014.7036375","DOIUrl":null,"url":null,"abstract":"Prognosis of DC-DC power converters is necessary in embedded and safety critical applications to prevent further damages. However, most of the prognostic methods of power converters are focus on the critical components of the converters. Furthermore, the methods seldom consider the effect of changes in operating conditions (e.g. power supply and load). In order to address these problems, an innovative system-level fault characteristic parameter (FCP) represents the degradation status of the entire converter is extracted, and a prognostic method of DC-DC converters based on the degradation trend prediction of the FCP is proposed. Firstly, the effect of component-level degradation on the overall performance of the DC-DC converters is studied. Then, a performance parameter of DC-DC converters which is sensitive to the degradation of all critical components is chosen, and a least squares support vector machine (LSSVM) model is used to convert the performance parameter to the FCP under predetermined normal condition to eliminate the influence of changes in operating conditions. Finally, the trend prediction of the FCP is performed based on Gaussian process regression (GPR) to realize the prognosis of DC-DC converters. A Boost converter is taken as an illustrative example. Results show the feasibility and effectiveness of the proposed method.","PeriodicalId":376942,"journal":{"name":"2014 International Conference on Prognostics and Health Management","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A Prognostic method for DC-DC converters under variable operating conditions\",\"authors\":\"Yi Wu, You-ren Wang, Yuanyuan Jiang, Quan Sun\",\"doi\":\"10.1109/ICPHM.2014.7036375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prognosis of DC-DC power converters is necessary in embedded and safety critical applications to prevent further damages. However, most of the prognostic methods of power converters are focus on the critical components of the converters. Furthermore, the methods seldom consider the effect of changes in operating conditions (e.g. power supply and load). In order to address these problems, an innovative system-level fault characteristic parameter (FCP) represents the degradation status of the entire converter is extracted, and a prognostic method of DC-DC converters based on the degradation trend prediction of the FCP is proposed. Firstly, the effect of component-level degradation on the overall performance of the DC-DC converters is studied. Then, a performance parameter of DC-DC converters which is sensitive to the degradation of all critical components is chosen, and a least squares support vector machine (LSSVM) model is used to convert the performance parameter to the FCP under predetermined normal condition to eliminate the influence of changes in operating conditions. Finally, the trend prediction of the FCP is performed based on Gaussian process regression (GPR) to realize the prognosis of DC-DC converters. A Boost converter is taken as an illustrative example. Results show the feasibility and effectiveness of the proposed method.\",\"PeriodicalId\":376942,\"journal\":{\"name\":\"2014 International Conference on Prognostics and Health Management\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Prognostics and Health Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPHM.2014.7036375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Prognostics and Health Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPHM.2014.7036375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在嵌入式和安全关键应用中,对DC-DC电源转换器进行预估是必要的,以防止进一步损坏。然而,大多数电源变换器的预测方法都集中在变换器的关键部件上。此外,这些方法很少考虑运行条件(如电源和负载)变化的影响。为了解决这些问题,创新性地提取了代表整个变换器退化状态的系统级故障特征参数(FCP),并提出了一种基于FCP退化趋势预测的DC-DC变换器预测方法。首先,研究了元件级退化对DC-DC变换器整体性能的影响。然后,选择对所有关键部件退化敏感的DC-DC变换器性能参数,并利用最小二乘支持向量机(LSSVM)模型将性能参数转换为预定正常状态下的FCP,以消除运行条件变化的影响。最后,基于高斯过程回归(GPR)对FCP进行趋势预测,实现对DC-DC变换器的预测。以升压变换器为例。结果表明了该方法的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Prognostic method for DC-DC converters under variable operating conditions
Prognosis of DC-DC power converters is necessary in embedded and safety critical applications to prevent further damages. However, most of the prognostic methods of power converters are focus on the critical components of the converters. Furthermore, the methods seldom consider the effect of changes in operating conditions (e.g. power supply and load). In order to address these problems, an innovative system-level fault characteristic parameter (FCP) represents the degradation status of the entire converter is extracted, and a prognostic method of DC-DC converters based on the degradation trend prediction of the FCP is proposed. Firstly, the effect of component-level degradation on the overall performance of the DC-DC converters is studied. Then, a performance parameter of DC-DC converters which is sensitive to the degradation of all critical components is chosen, and a least squares support vector machine (LSSVM) model is used to convert the performance parameter to the FCP under predetermined normal condition to eliminate the influence of changes in operating conditions. Finally, the trend prediction of the FCP is performed based on Gaussian process regression (GPR) to realize the prognosis of DC-DC converters. A Boost converter is taken as an illustrative example. Results show the feasibility and effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detection and classification for faults in drilling process using vibration analysis Prognostics model for tool life prediction in milling using texture features of surface image data Development of asset fault signatures for Prognostic and Health Management in the nuclear industry A model-based fault injection system for aerocraft wing structure Robust multivariate statistical ensembles for bearing fault detection and identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1