基于深度学习的海量心电图数据分类

Lin Zhou, Yan Yan, Xingbin Qin, Chan Yuan, D. Que, Lei Wang
{"title":"基于深度学习的海量心电图数据分类","authors":"Lin Zhou, Yan Yan, Xingbin Qin, Chan Yuan, D. Que, Lei Wang","doi":"10.1109/IMCEC.2016.7867316","DOIUrl":null,"url":null,"abstract":"Classification is the basis of electrocardiography (ECG) analysis. In the last decades, a large number of methods were proposed to deal with the classification of ECG beats. In this paper a kind of deep learning method is introduced into ECG beats classification. We create a classifier with stacked sparse autoencoder (SAE), and then combine the softmax regression with the SAE networks to consummate the classifier, from which we can get higher accuracy in the classification task. In the deep networks architecture, we use the stacked sparse autoencoder to get high-level features. Experimental results with the MIT-BIH ECG dataset confirmed that classifier build in this autoencoder based deep networks method perform better in the classical classification problem.","PeriodicalId":218222,"journal":{"name":"2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Deep learning-based classification of massive electrocardiography data\",\"authors\":\"Lin Zhou, Yan Yan, Xingbin Qin, Chan Yuan, D. Que, Lei Wang\",\"doi\":\"10.1109/IMCEC.2016.7867316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classification is the basis of electrocardiography (ECG) analysis. In the last decades, a large number of methods were proposed to deal with the classification of ECG beats. In this paper a kind of deep learning method is introduced into ECG beats classification. We create a classifier with stacked sparse autoencoder (SAE), and then combine the softmax regression with the SAE networks to consummate the classifier, from which we can get higher accuracy in the classification task. In the deep networks architecture, we use the stacked sparse autoencoder to get high-level features. Experimental results with the MIT-BIH ECG dataset confirmed that classifier build in this autoencoder based deep networks method perform better in the classical classification problem.\",\"PeriodicalId\":218222,\"journal\":{\"name\":\"2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMCEC.2016.7867316\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMCEC.2016.7867316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

分类是心电图分析的基础。在过去的几十年里,人们提出了大量的方法来处理心电心跳的分类。本文将一种深度学习方法引入到心电心跳分类中。我们建立了一个基于堆叠稀疏自编码器(SAE)的分类器,然后将softmax回归与SAE网络相结合来完善分类器,从而提高了分类任务的准确率。在深度网络架构中,我们使用堆叠稀疏自编码器来获得高级特征。基于MIT-BIH心电数据集的实验结果证实,基于自编码器的深度网络方法构建的分类器在经典分类问题上表现更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep learning-based classification of massive electrocardiography data
Classification is the basis of electrocardiography (ECG) analysis. In the last decades, a large number of methods were proposed to deal with the classification of ECG beats. In this paper a kind of deep learning method is introduced into ECG beats classification. We create a classifier with stacked sparse autoencoder (SAE), and then combine the softmax regression with the SAE networks to consummate the classifier, from which we can get higher accuracy in the classification task. In the deep networks architecture, we use the stacked sparse autoencoder to get high-level features. Experimental results with the MIT-BIH ECG dataset confirmed that classifier build in this autoencoder based deep networks method perform better in the classical classification problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High performance path following for UAV based on advanced vector field guidance law Design of autonomous underwater vehicle positioning system Temperature field simulation of herringbone grooved bearing based on FLUENT software Docker based overlay network performance evaluation in large scale streaming system Multi-channel automatic calibration system of pressure sensor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1