使用恢复的物理运动参数跟踪对象

Yong Zhang, Dmitry Goldgof, Sudeep Sarkar, L. Tsap
{"title":"使用恢复的物理运动参数跟踪对象","authors":"Yong Zhang, Dmitry Goldgof, Sudeep Sarkar, L. Tsap","doi":"10.1109/ICPR.2002.1048224","DOIUrl":null,"url":null,"abstract":"This paper presents a physical model-based method for recovering and tracking nonrigid motion of elastic objects. The proposed method recovers the motion in terms of actual physical parameters (Young's modulus) that characterize the dynamics of the objects. The tracking scheme synthesizes the motion of the points inside the object from the boundary observations, constrained by the physical parameters. Experiments on three image sequences show that using the recovered physical parameters as constraints can greatly improve the tracking quality.","PeriodicalId":159502,"journal":{"name":"Object recognition supported by user interaction for service robots","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Tracking objects using recovered physical motion parameters\",\"authors\":\"Yong Zhang, Dmitry Goldgof, Sudeep Sarkar, L. Tsap\",\"doi\":\"10.1109/ICPR.2002.1048224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a physical model-based method for recovering and tracking nonrigid motion of elastic objects. The proposed method recovers the motion in terms of actual physical parameters (Young's modulus) that characterize the dynamics of the objects. The tracking scheme synthesizes the motion of the points inside the object from the boundary observations, constrained by the physical parameters. Experiments on three image sequences show that using the recovered physical parameters as constraints can greatly improve the tracking quality.\",\"PeriodicalId\":159502,\"journal\":{\"name\":\"Object recognition supported by user interaction for service robots\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Object recognition supported by user interaction for service robots\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2002.1048224\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Object recognition supported by user interaction for service robots","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2002.1048224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种基于物理模型的弹性物体非刚体运动恢复与跟踪方法。该方法根据表征物体动力学特性的实际物理参数(杨氏模量)恢复运动。该跟踪方案在物理参数约束下,根据边界观测综合目标内部点的运动。在三个图像序列上的实验表明,以恢复的物理参数作为约束,可以大大提高跟踪质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tracking objects using recovered physical motion parameters
This paper presents a physical model-based method for recovering and tracking nonrigid motion of elastic objects. The proposed method recovers the motion in terms of actual physical parameters (Young's modulus) that characterize the dynamics of the objects. The tracking scheme synthesizes the motion of the points inside the object from the boundary observations, constrained by the physical parameters. Experiments on three image sequences show that using the recovered physical parameters as constraints can greatly improve the tracking quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pattern recognition for humanitarian de-mining Data clustering using evidence accumulation Facial expression recognition using pseudo 3-D hidden Markov models Speeding up SVM decision based on mirror points Real-time tracking and estimation of plane pose
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1