考虑通信代价的多处理机任务调度的多种群并行遗传算法

Rashid Morady, D. Dal
{"title":"考虑通信代价的多处理机任务调度的多种群并行遗传算法","authors":"Rashid Morady, D. Dal","doi":"10.1109/ISCC.2016.7543829","DOIUrl":null,"url":null,"abstract":"Multiprocessor task scheduling is one of the hardest combinatorial optimization problems in parallel and distributed systems. It is known as NP-hard and therefore, scanning the whole search space using an exact algorithm to find the optimal solution is not practical. Instead, metaheuristics are mostly employed to find a near-optimal solution in a reasonable amount of time. In this paper, a multi-population based parallel genetic algorithm is presented for the optimization of multiprocessor task scheduling in the presence of communication costs. To the best of our knowledge, this parallel genetic algorithm approach is applied to the problem at hand for the first time using a benchmark set that includes well-known task graphs from different sources. Our experiments conducted on several task graphs with different sizes from the benchmark set showed the superiority of the approach over a conventional genetic algorithm and the related works in the literature in terms of two different performance metrics. Our parallel implementation not only decreased the execution time but also increased the quality of the scheduling solutions considerably.","PeriodicalId":148096,"journal":{"name":"2016 IEEE Symposium on Computers and Communication (ISCC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"A multi-population based parallel genetic algorithm for multiprocessor task scheduling with Communication Costs\",\"authors\":\"Rashid Morady, D. Dal\",\"doi\":\"10.1109/ISCC.2016.7543829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiprocessor task scheduling is one of the hardest combinatorial optimization problems in parallel and distributed systems. It is known as NP-hard and therefore, scanning the whole search space using an exact algorithm to find the optimal solution is not practical. Instead, metaheuristics are mostly employed to find a near-optimal solution in a reasonable amount of time. In this paper, a multi-population based parallel genetic algorithm is presented for the optimization of multiprocessor task scheduling in the presence of communication costs. To the best of our knowledge, this parallel genetic algorithm approach is applied to the problem at hand for the first time using a benchmark set that includes well-known task graphs from different sources. Our experiments conducted on several task graphs with different sizes from the benchmark set showed the superiority of the approach over a conventional genetic algorithm and the related works in the literature in terms of two different performance metrics. Our parallel implementation not only decreased the execution time but also increased the quality of the scheduling solutions considerably.\",\"PeriodicalId\":148096,\"journal\":{\"name\":\"2016 IEEE Symposium on Computers and Communication (ISCC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Symposium on Computers and Communication (ISCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCC.2016.7543829\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Symposium on Computers and Communication (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC.2016.7543829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

多处理机任务调度是并行和分布式系统中最难的组合优化问题之一。它被称为NP-hard,因此,使用精确的算法扫描整个搜索空间来找到最优解是不切实际的。相反,元启发式主要用于在合理的时间内找到接近最优的解决方案。针对存在通信代价的多处理机任务调度问题,提出了一种基于多种群的并行遗传算法。据我们所知,这种并行遗传算法方法第一次应用于手头的问题,使用一个基准集,其中包括来自不同来源的众所周知的任务图。我们在基准集的几个不同大小的任务图上进行的实验表明,该方法在两个不同的性能指标方面优于传统的遗传算法和文献中的相关工作。我们的并行实现不仅减少了执行时间,而且大大提高了调度解决方案的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A multi-population based parallel genetic algorithm for multiprocessor task scheduling with Communication Costs
Multiprocessor task scheduling is one of the hardest combinatorial optimization problems in parallel and distributed systems. It is known as NP-hard and therefore, scanning the whole search space using an exact algorithm to find the optimal solution is not practical. Instead, metaheuristics are mostly employed to find a near-optimal solution in a reasonable amount of time. In this paper, a multi-population based parallel genetic algorithm is presented for the optimization of multiprocessor task scheduling in the presence of communication costs. To the best of our knowledge, this parallel genetic algorithm approach is applied to the problem at hand for the first time using a benchmark set that includes well-known task graphs from different sources. Our experiments conducted on several task graphs with different sizes from the benchmark set showed the superiority of the approach over a conventional genetic algorithm and the related works in the literature in terms of two different performance metrics. Our parallel implementation not only decreased the execution time but also increased the quality of the scheduling solutions considerably.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Joint power control and sub-channel allocation for co-channel OFDMA femtocells Measuring the users and conversations of a vibrant online emotional support system An efficient KP-ABE scheme for content protection in Information-Centric Networking Energy-efficient MAC schemes for Delay-Tolerant Sensor Networks FRT-Skip Graph: A Skip Graph-style structured overlay based on Flexible Routing Tables
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1