先进的油藏控制系统为数字化海上作业和分析铺平了道路

Elias Garcia, K. Robertson
{"title":"先进的油藏控制系统为数字化海上作业和分析铺平了道路","authors":"Elias Garcia, K. Robertson","doi":"10.2118/208898-ms","DOIUrl":null,"url":null,"abstract":"\n Digital offshore operations and analysis rely on the deployment of downhole completion technologies that can produce significant quantities of data. Historically, downhole monitoring technologies, such as fiber optics and permanent downhole gauges, have been a good source of wellbore data for modeling and analysis. Permanent downhole monitoring technologies have benefitted from the advancement of high temperature electronics, reducing overall power consumption, and directly affecting sensor and electronics reliability and longevity. Through the utilization of telemetry schemes for addressability, permanent downhole monitoring technologies have also helped to develop electro-hydraulic and all-electric downhole flow control technologies, by enabling increased wellbore compartmentalization and fast control of multiple wellbore intervals.\n Advanced reservoir control systems have the ability to integrate to smart and data driven systems. They can be subdivided into extrinsic and intrinsic systems. Intrinsic systems benefit from having integrated monitoring technologies that can be addressed through telemetry schemes, which are also used to control multiple wellbore intervals. Examples of intrinsic systems include intrinsic electro-hydraulic systems and all-electric systems. To date, plenty of testing has been done with these types of intrinsic systems, but this paper highlights the evaluation of an intrinsic electro-hydraulic system.\n Ultimately, the authors believe that a stepwise approach through the implementation of hybrid-electric digital systems is key to the overall acceptance of all-electric systems. The success and reliability of electro-hydraulic systems will play a significant role in mass acceptance of all-electric systems in the oilfield. Electro-hydraulic systems are a good segway into all electric systems and give operators the chance to utilize some of the existing infrastructure while benefiting from some of the optimizations brought on by the Digital Oilfield.","PeriodicalId":146458,"journal":{"name":"Day 1 Wed, March 16, 2022","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Advanced Reservoir Control Systems Paving the Way for Digital Offshore Operations and Analysis\",\"authors\":\"Elias Garcia, K. Robertson\",\"doi\":\"10.2118/208898-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Digital offshore operations and analysis rely on the deployment of downhole completion technologies that can produce significant quantities of data. Historically, downhole monitoring technologies, such as fiber optics and permanent downhole gauges, have been a good source of wellbore data for modeling and analysis. Permanent downhole monitoring technologies have benefitted from the advancement of high temperature electronics, reducing overall power consumption, and directly affecting sensor and electronics reliability and longevity. Through the utilization of telemetry schemes for addressability, permanent downhole monitoring technologies have also helped to develop electro-hydraulic and all-electric downhole flow control technologies, by enabling increased wellbore compartmentalization and fast control of multiple wellbore intervals.\\n Advanced reservoir control systems have the ability to integrate to smart and data driven systems. They can be subdivided into extrinsic and intrinsic systems. Intrinsic systems benefit from having integrated monitoring technologies that can be addressed through telemetry schemes, which are also used to control multiple wellbore intervals. Examples of intrinsic systems include intrinsic electro-hydraulic systems and all-electric systems. To date, plenty of testing has been done with these types of intrinsic systems, but this paper highlights the evaluation of an intrinsic electro-hydraulic system.\\n Ultimately, the authors believe that a stepwise approach through the implementation of hybrid-electric digital systems is key to the overall acceptance of all-electric systems. The success and reliability of electro-hydraulic systems will play a significant role in mass acceptance of all-electric systems in the oilfield. Electro-hydraulic systems are a good segway into all electric systems and give operators the chance to utilize some of the existing infrastructure while benefiting from some of the optimizations brought on by the Digital Oilfield.\",\"PeriodicalId\":146458,\"journal\":{\"name\":\"Day 1 Wed, March 16, 2022\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 1 Wed, March 16, 2022\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/208898-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Wed, March 16, 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/208898-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

数字化海上作业和分析依赖于井下完井技术的部署,这些技术可以产生大量数据。从历史上看,光纤和永久性井下仪表等井下监测技术一直是建模和分析井筒数据的良好来源。永久性井下监测技术得益于高温电子技术的进步,降低了整体功耗,并直接影响了传感器和电子设备的可靠性和使用寿命。通过遥测方案的可寻址性,永久性井下监测技术也有助于开发电液和全电动井下流量控制技术,从而提高了井筒分隔度,并能快速控制多个井段。先进的油藏控制系统能够集成到智能和数据驱动系统中。它们可以细分为外在系统和内在系统。固有系统受益于集成的监测技术,可以通过遥测方案解决,也可用于控制多个井眼段。内禀系统的例子包括内禀电液系统和全电系统。迄今为止,已经对这些类型的内禀系统进行了大量的测试,但本文重点介绍了一种内禀电液系统的评估。最后,作者认为,通过实施混合电力数字系统的逐步方法是全电力系统全面接受的关键。电液系统的成功和可靠性对全电系统在油田的大规模应用具有重要意义。电液系统是所有电气系统的一个很好的过渡,使作业者有机会利用一些现有的基础设施,同时受益于数字油田带来的一些优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advanced Reservoir Control Systems Paving the Way for Digital Offshore Operations and Analysis
Digital offshore operations and analysis rely on the deployment of downhole completion technologies that can produce significant quantities of data. Historically, downhole monitoring technologies, such as fiber optics and permanent downhole gauges, have been a good source of wellbore data for modeling and analysis. Permanent downhole monitoring technologies have benefitted from the advancement of high temperature electronics, reducing overall power consumption, and directly affecting sensor and electronics reliability and longevity. Through the utilization of telemetry schemes for addressability, permanent downhole monitoring technologies have also helped to develop electro-hydraulic and all-electric downhole flow control technologies, by enabling increased wellbore compartmentalization and fast control of multiple wellbore intervals. Advanced reservoir control systems have the ability to integrate to smart and data driven systems. They can be subdivided into extrinsic and intrinsic systems. Intrinsic systems benefit from having integrated monitoring technologies that can be addressed through telemetry schemes, which are also used to control multiple wellbore intervals. Examples of intrinsic systems include intrinsic electro-hydraulic systems and all-electric systems. To date, plenty of testing has been done with these types of intrinsic systems, but this paper highlights the evaluation of an intrinsic electro-hydraulic system. Ultimately, the authors believe that a stepwise approach through the implementation of hybrid-electric digital systems is key to the overall acceptance of all-electric systems. The success and reliability of electro-hydraulic systems will play a significant role in mass acceptance of all-electric systems in the oilfield. Electro-hydraulic systems are a good segway into all electric systems and give operators the chance to utilize some of the existing infrastructure while benefiting from some of the optimizations brought on by the Digital Oilfield.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Steam Additives to Reduce the Steam-Oil Ratio in SAGD: Experimental Analysis, Pilot Design, and Field Application Powering Offshore Installations with Wind Energy Quantification of Phase Behaviour and Physical Properties of Alkane Solvents/CO2/ Water/Heavy Oil Systems under Equilibrium and Nonequilibrium Conditions Profile Ultrasonic Velocity Measurements Performed on Slabbed Core: Implications for High-Resolution Permeability Prediction in Low-Permeability Rocks Holistic Real-Time Drilling Parameters Optimization Delivers Best-in-Class Drilling Performance and Preserves Bit Condition - A Case History from an Integrated Project in the Middle East
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1