{"title":"网格可伸缩编码中的统计-无限失真估计","authors":"D. Cernea, A. Munteanu, J. Cornelis, P. Schelkens","doi":"10.1109/MMSP.2008.4665128","DOIUrl":null,"url":null,"abstract":"This paper investigates the novel concept of local error control in arbitrary mesh encoding, and proposes a new L-infinite mesh coding approach implementing this concept. In contrast to traditional mesh coding systems that use the mean-square error as distortion measure, the proposed approach employs the L-infinite distortion as target distortion metric. In this context, a novel wavelet-based L-infinite-constrained coding approach for meshes is proposed, which ensures that the maximum local error between the original and decoded meshes is lower than a given upper-bound. Additionally, the proposed system achieves scalability in L-infinite sense, that is, the L-infinite distortion upper-bound can be accurately estimated when decoding any layer from the input stream. Moreover, a distortion estimation approach is proposed, expressing the L-infinite distortion in the spatial domain as a statistical estimate of quantization errors produced in the wavelet domain. An instantiation of the proposed L-infinite coding approach is demonstrated for MESHGRID, which is a scalable 3D object coding system, part of MPEG-4 AFX. The proposed L-infinite coding approach guarantees that the maximum error is upper-bounded, it enables a fast real-time implementation of the rate-allocation, and it preserves all the scalability features and animation capabilities of the employed scalable mesh codec.","PeriodicalId":402287,"journal":{"name":"2008 IEEE 10th Workshop on Multimedia Signal Processing","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Statistical L-infinite distortion estimation in scalable coding of meshes\",\"authors\":\"D. Cernea, A. Munteanu, J. Cornelis, P. Schelkens\",\"doi\":\"10.1109/MMSP.2008.4665128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the novel concept of local error control in arbitrary mesh encoding, and proposes a new L-infinite mesh coding approach implementing this concept. In contrast to traditional mesh coding systems that use the mean-square error as distortion measure, the proposed approach employs the L-infinite distortion as target distortion metric. In this context, a novel wavelet-based L-infinite-constrained coding approach for meshes is proposed, which ensures that the maximum local error between the original and decoded meshes is lower than a given upper-bound. Additionally, the proposed system achieves scalability in L-infinite sense, that is, the L-infinite distortion upper-bound can be accurately estimated when decoding any layer from the input stream. Moreover, a distortion estimation approach is proposed, expressing the L-infinite distortion in the spatial domain as a statistical estimate of quantization errors produced in the wavelet domain. An instantiation of the proposed L-infinite coding approach is demonstrated for MESHGRID, which is a scalable 3D object coding system, part of MPEG-4 AFX. The proposed L-infinite coding approach guarantees that the maximum error is upper-bounded, it enables a fast real-time implementation of the rate-allocation, and it preserves all the scalability features and animation capabilities of the employed scalable mesh codec.\",\"PeriodicalId\":402287,\"journal\":{\"name\":\"2008 IEEE 10th Workshop on Multimedia Signal Processing\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE 10th Workshop on Multimedia Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMSP.2008.4665128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE 10th Workshop on Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2008.4665128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Statistical L-infinite distortion estimation in scalable coding of meshes
This paper investigates the novel concept of local error control in arbitrary mesh encoding, and proposes a new L-infinite mesh coding approach implementing this concept. In contrast to traditional mesh coding systems that use the mean-square error as distortion measure, the proposed approach employs the L-infinite distortion as target distortion metric. In this context, a novel wavelet-based L-infinite-constrained coding approach for meshes is proposed, which ensures that the maximum local error between the original and decoded meshes is lower than a given upper-bound. Additionally, the proposed system achieves scalability in L-infinite sense, that is, the L-infinite distortion upper-bound can be accurately estimated when decoding any layer from the input stream. Moreover, a distortion estimation approach is proposed, expressing the L-infinite distortion in the spatial domain as a statistical estimate of quantization errors produced in the wavelet domain. An instantiation of the proposed L-infinite coding approach is demonstrated for MESHGRID, which is a scalable 3D object coding system, part of MPEG-4 AFX. The proposed L-infinite coding approach guarantees that the maximum error is upper-bounded, it enables a fast real-time implementation of the rate-allocation, and it preserves all the scalability features and animation capabilities of the employed scalable mesh codec.